Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that plays a key role in drug metabolism. Recently, PXR was found to attenuate the development of liver cancer by suppressing epithelial-mesenchymal transition (EMT) in liver cancer cells in a mouse model of two-stage chemical carcinogenesis. To elucidate the role of PXR in the EMT of liver cancer cells, we focused on its role in hepatic stellate cells (HSCs), which are components of the tumor microenvironment in hepatocellular carcinoma (HCC). Human HSC-derived LX-2 cells stably expressed destabilization domain (DD)-fused human PXR (hPXR-LX2 cells). Human HCC-derived HepG2 cells were transfected with the EMT marker VIM promoter-regulated reporter plasmid and co-cultured with hPXR-LX2 cells or treated with hPXR-LX2-derived conditioned medium (CM). Co-culture or CM treatment increased reporter activity in HepG2 cells. This induction was attenuated upon PXR activation in hPXR-LX2 cells by treatment with the DD-stabilizing chemical Shield-1 and the human PXR ligand rifampicin. PXR activation in hPXR-LX2 cells exhibited inhibition of TGF-β1-induced transdifferentiation, supported by observations of morphological changes and protein or mRNA levels of the transdifferentiation markers COL1A1 and FN1. PXR activation in hPXR-LX2 cells also attenuated the mRNA levels of the key transdifferentiation factor, POSTN. Treatment of hPXR-LX2 cells with recombinant POSTN restored the PXR-mediated suppression of transdifferentiation. Reporter assays with the POSTN promoter showed that PXR inhibited the NF-κB-mediated transcription of POSTN. Consequently, PXR activation in HSCs is expected to inhibit transdifferentiation by down-regulating POSTN expression, thereby suppressing EMT of liver cancer cells.
-
Cover Image
Cover Image
The cover image shows that the toxic product formaldehyde is generated when cells are incubated with the pharmacological activator of AMPK, C13. Pixels with yellow (highest) or red colour indicate high concentrations of formaldehyde, and pixels with purple or blue low concentrations of formaldehyde, detected using the fluorescent probe R6-FA. For further information see the article by Freemantle and colleagues (pp. 1205–1221) in this issue. The image is provided by D. Grahame Hardie.
Pregnane X receptor inhibits the transdifferentiation of hepatic stellate cells by down-regulating periostin expression
Takumi Sato, Ryota Shizu, Ryonosuke Baba, Akira Ooka, Takuomi Hosaka, Yuichiro Kanno, Kouichi Yoshinari; Pregnane X receptor inhibits the transdifferentiation of hepatic stellate cells by down-regulating periostin expression. Biochem J 18 September 2024; 481 (18): 1173–1186. doi: https://doi.org/10.1042/BCJ20240172
Download citation file: