Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
-
Cover Image
Cover Image
The cover image visually captures the manuscript's core theme regarding the evolutionary conservation between canines and humans, particularly emphasizing the valuable role of canine models in advancing cancer research. For further information, see the article by Mudrale and colleagues (pp. 1603–1620) in this issue. The image is provided by Kakoli Bose.
Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor
Carlos Henrique Rocha Catalão, Luis Henrique Angenendt da Costa, Jonathas Rodrigo dos Santos, Luciane Carla Alberici, Luiz Luciano Falconi-Sobrinho, Norberto Cysne Coimbra, Diogo Dominguini, Felipe Dal-Pizzol, Tatiana Barichello, Maria José Alves Rocha; Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 20 November 2024; 481 (22): 1585–1602. doi: https://doi.org/10.1042/BCJ20240217
Download citation file: