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Rho GTPases are critical for platelet function. Although the
roles of RhoA, Rac and Cdc42 are characterized, platelets
express other Rho GTPases, whose activities are less well
understood. This review summarizes our understanding of the
roles of platelet Rho GTPases and focuses particularly on the
functions of Rif and RhoG. In human platelets, Rif interacts
with cytoskeleton regulators including formins mDia1 and mDia3,
whereas RhoG binds SNARE-complex proteins and cytoskeletal
regulators ELMO and DOCK1. Knockout mouse studies suggest
that Rif plays no critical functions in platelets, likely due to
functional overlap with other Rho GTPases. In contrast, RhoG is
essential for normal granule secretion downstream of the collagen

receptor GPVI. The central defect in RhoG− / − platelets is reduced
dense granule secretion, which impedes integrin activation and
aggregation and limits platelet recruitment to growing thrombi
under shear, translating into reduced thrombus formation in vivo.
Potential avenues for future work on Rho GTPases in platelets
are also highlighted, including identification of the key regulator
for platelet filopodia formation and investigation of the role of the
many Rho GTPase regulators in platelet function in both health
and disease.

Key words: cell division control protein 42 (Cdc42), Rif, RhoG,
shape change, secretion, thrombosis.

PLATELETS IN PHYSIOLOGY AND PATHOLOGY

The activities of Rho GTPase proteins are central to many of the
processes that underpin the physiological and pathological roles
of platelets [1]. Platelets are small, disc-shaped cells with a short
lifespan that number in the hundreds of millions per millilitre of
blood and are integral to the initial response to vascular endothelial
damage [2,3].

In vivo, haemostasis is a complex continuum of events,
initiated by damage or disruption of the normally continuous
endothelial cell barrier that exposes subendothelial extracellular
matrix (ECM). Platelets are activated by cell-surface receptor
interactions with ECM ligands, leading to shape change,
granule secretion, platelet aggregation and procoagulant surface
expression. Locally generated thrombin, platelet-synthesized
thromboxane and adenosine diphosphate (ADP) secreted from
platelet dense granules stimulate platelets arriving at the site
of injury, amplifying platelet responses to primary agonists and
extending the platelet plug.

Activating interactions between platelets and von Willebrand
factor (VWF) and collagen via the cell-surface receptors GpIb-
IX-V and GPVI, respectively lead to dramatic alterations in
shape, due principally to reorganization of the actin cytoskeleton.

Alterations in platelet morphology increase surface area,
maximizing opportunities for interactions with ECM and other
cells [4,5]. These initial shape change events are loss of the
discoid shape, sphering and then extension of filopodia [6]. These
thin (0.1–0.3 μm) finger-like membrane protrusions enclosing
tight parallel bundles of filamentous actin (F-actin) increase
the potential for contact between platelets and extracellular
matrix and for interactions with other cells [7]. Later, cell
shape changes involve lamellipodia formation to allow platelet
spreading [8], enabling platelets to cover endothelial surface
defects.

Granule secretion is critical for normal platelet function and
is a highly orchestrated and regulated process. In platelets, some
granules may be pre-docked at the plasma membrane, but most
are homogeneously distributed through the platelet cytosol and
must be brought to the plasma membrane or membranes of the
open canalicular system for release to occur [9,10]. Granule
secretion requires reorganization of the actin cytoskeleton to
facilitate granule transport and enable granule access to platelet
membranes. These cytoskeletal rearrangements occur prior to
the soluble N-ethylmaleimide-sensitive factor (NSF) attachment
protein receptor (SNARE) machinery-mediated regulation of the
membrane fusion process. The Rab family of small GTPases are

Abbreviations: AP-MS, affinity-purification mass spectrometry; ARHGEF, Rho guanine nucleotide exchange factor; ARP2/3, actin related protein 2/3
complex; Cdc42, cell division control protein 42; CRP, collagen-related peptide; DOCK, dedicator of cytokinesis; ECM, extracellular matrix; ELMO,
engulfment and cell motility; Ena, enabled; F-actin, filamentous actin; FcR, Fc receptor; GAP, GTPase activating protein; GDI, guanine nucleotide
dissociation inhibitor; GEF, guanine nucleotide exchange factor; GP, glycoprotein; IMD, IRSp53 and MIM homology domain; ITAM, immunoreceptor
tyrosine-based activation motif; LARG, leukaemia-associated Rho GEF (ARHGEF12); LAT, linker for activation of T-cells; MLC, myosin light chain; MTSS1,
metastasis suppressor protein 1; NSF, N-ethylmaleimide-sensitive factor; PAK, P21-activated kinase; PAR, protease activated receptor; PF4, platelet
factor-4; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLC, phospholipase C; PREX-1, PI(3,4,5)P3-dependent Rac exchanger 1 protein; Rac,
Ras-related C3 botulinum toxin substrate; Rho GTPase, Ras homology family GTPase; Rif, Rho in filopodia (RhoF); ROCK, Rho kinase; SNARE, soluble
N-ethylmaleimide attachment protein receptors; Syk, spleen tyrosine kinase; TCR, T-cell receptor; TRIO, triple functional domain containing protein; VAMP,
vesicle-associated membrane protein; VASP, vasodilator-stimulated phosphoprotein; VWF, von Willebrand factor; WASP, Wiskott–Aldrich syndrome protein.

1 To whom correspondence should be addressed (email a.poole@bris.ac.uk).

c© The Authors Journal compilation c© 2015 Biochemical Society

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/466/3/431/735901/bj4660431.pdf by guest on 25 April 2024

http://getutopia.com/documents
https://crossmark.crossref.org/dialog/?doi=10.1042/BJ20141404&domain=pdf&date_stamp=2015-03-06


432 R. Goggs and others

Figure 1 A schematic representation of the known roles of Cdc42, Rac1 and RhoA in the shape change and granule secretion functions of platelets

The potential roles of RhoG and Rif are also included for comparison. Cdc42 plays a role in regulating dense granule secretion and may be partly responsible for platelet filopodia formation. Rac
is involved in lamellipodia formation downstream of both collagen-GPVI and thrombin interactions with PARs. RhoA is also involved in regulating lamellipodia formation, integrin activation and is
responsible for generating stress fibres.

involved in platelet granule formation and Rabs 3b, 6, 8 and 27a
are all involved in activation-triggered granule secretion [11–14].
The differential roles of individual Rab proteins in regulation of
distinct platelet and megakaryocyte secretion events are still being
clarified [15], but a thorough discussion of platelet Rab proteins
is outside the scope of this review.

Mammalian platelets are highly specialized for haemostasis but
also contribute to antimicrobial host defence through expression
of cell-surface receptors for immunoglobulins [16], pathogen-
associated molecular patterns [17], and chemokines [18]. Platelets
can directly bind bacteria through multiple receptor–ligand
interactions that trigger platelet shape change [19], characterized
by filopodia formation with coincident rearrangement of both
the platelet actin cytoskeleton and microtubule networks [20–22].
Platelets also secrete antimicrobial proteins including thymosin
β-4, platelet kinocidins and complement proteins from their
α granules [23], which can be released in direct response to
interactions with bacteria [24,25]. Haemostatic accumulations
of platelets at vascular injury sites also place them in the ideal
location to promote and co-ordinate revascularization and tissue
repair through secretion of angiogenesis activators, growth factors
and chemokines from their α granules [26,27].

Platelets are implicated in pathological processes typically
due to inappropriate or excessive activation of normal
platelet physiological processes. The best-known example is
atherothrombosis, where collagen exposure and local thrombin
generation at sites of plaque rupture leads to exuberant
thrombus formation and consequent ischaemia or infarction, most
commonly occurring in coronary and cerebral arteries. Platelets
may also be involved in the pathogenesis of atherosclerosis
itself [28]. At predilection sites for atherosclerosis and in the
presence of risk factors such as hypercholesterolaemia, platelets
may adhere to intact endothelium and stimulate endothelial cells
to recruit leucocytes that become the foam cells characteristic of
atherosclerosis [29–31]. Platelets also play complex roles in the

development and resolution of such varied diseases as diabetes
[32], sepsis [33] and cancer [34].

Rho GTPases

Platelets contain classical Rho family members from all four
subfamilies and also atypical Rho GTPases such as RhoBTB1
[35]. The Rho GTPases Rac [8], RhoA [36] and Cdc42 [37], have
established roles as regulators of platelet function (Figure 1).
Transcript and proteomic studies suggest human platelets also
express other classical Rho family members including RhoB,
RhoC, RhoH and RhoQ but the functions of many of these other
GTPases in platelets are unknown [35,38]. One major function of
Rho GTPases is regulation of the actin cytoskeleton, but they are
also involved in a number of other biochemical pathways. Of most
relevance to platelets are control of phospholipase C (PLC) [39],
and phosphoinositide-3-kinase (PI3K) [40], and the regulation
of microtubule dynamics [41], cell–cell contacts [42], and
granule secretion [43]. This functional diversity is accomplished
through the binding of a wide range of effector proteins to
the GTP-loaded activated GTPase. These effectors belong
to multiple protein families including actin nucleation proteins
such as the diaphanous related formins and the ARP2/3 complex,
actin binding and bundling proteins such as enabled/vasodilator-
stimulated phosphoprotein (Ena/VASP) and membrane deforming
proteins such as the IRSp53 and MIM homology domain (IMD)
containing protein MTSS1 (metastasis suppressor protein 1)
(Table 1) [1]. Although there is considerable variation in the
motifs that different effectors use to bind Rho GTPases, a
number of effectors share consensus binding regions such as the
Cdc42/Rac-interactive-binding (CRIB) domain found in Wiskott–
Aldrich syndrome protein (WASP) and P21-activated kinase
(PAK). Among the Rho GTPase effector proteins of particular
importance to actin cytoskeletal rearrangements in platelets are
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Table 1 Platelet Rho GTPase effectors

A list of known effector proteins for RhoA, Rac1 and Cdc42 compiled from Bishop and Hall [113] and Bustelo et al. [144] and cross-referenced against mRNA transcripts from human platelets [35],
and two recent proteomic databases such that only proteins known to be expressed are listed [145,146].

Effector Protein type (alternate protein name) Upstream GTPase Main biological function

FilaminA Actin binding protein RhoA, Rac1, Cdc42 Cytoskeletal regulation, actin filament cross-linking
CopG2 Coatomer protein (γ 2-Cop) Cdc42 Vesicle trafficking (clathrin route)
DIAPH1,2 Formin RhoA, Rac1 Cytoskeletal change via profilin and IRSp53
FHOD1 Formin Rac1 Cytoskeletal and transcriptional regulation
FMNL1 Formin Rac1 Cytoskeletal organization, cell polarity, cytokinesis
IP3R1 Inositol 1,4,5-triphosphate receptor RhoA Calcium entry in endothelial cells
PI4,5PK Lipid kinase RhoA Phosphatidylinositol bisphosphate level modulation
CybA NADPH oxidase complex subunit Rac1 Superoxide production
NCF1,2 NADPH oxidase complex subunit Rac1, Cdc42 Superoxide production
PLC-β2 Phospholipase, C type (PLC-β2) Cdc42, Rac1 Production of second messengers
KCNA2 Potassium Channel subunit RhoA Potassium entry
PIK3R1 Regulatory p85 subunit of PIK3C Rac1, Cdc42 Regulation of PIK3C activity, signal transduction
PPP1R12A Regulatory subunit of phosphatase1 RhoA MLC inactivation, cytoskeletal regulation
IQGAP1,2 RhoGAP and scaffold protein Rac1, Cdc42 Cytoskeletal regulation, cell–cell contacts
ARFIP2 Scaffold protein (Por1) Rac1 Cytoskeletal regulation
Cdc42SE1,2 Scaffold protein (Spec1,2) Rac1, Cdc42 Modulation of GTPase signalling outputs
CYFIP1,2 Scaffold protein (Pir121) Rac1 Regulation of the cytoskeleton via WASF proteins
MTSS1 Scaffold protein Rac1 Cytoskeletal organization via WASF/WAVE
Kinectin1 Scaffold protein RhoA, Rac1, Cdc42 Kinesin binding, microtubule vesicular trafficking
NCK1 Scaffold protein with SH2/3 domains Rac1 Complex formation with WASP, signal transduction
NCKAP1 Scaffold protein (Nap125, Nap1) Rac1 Regulation of the cytoskeleton via WASF proteins
N-WASP Scaffold protein Cdc42 Cytoskeletal regulation via Arp2/3 complex
Pard6 A,G Scaffold protein (Par6α,γ ) Rac1, Cdc42 Cell polarity. Links GTPases and atypical PKCs
Trip10 Scaffold protein Cdc42 Binding of WASP to microtubules
WASP Scaffold protein Rac1 Cytoskeletal regulation via the Arp2/3 complex
WAVE/Scar1,2 Scaffold protein Cdc42, Rac1 Cytoskeletal regulation via the Arp2/3 complex
Cdc42bpgB Serine/threonine kinase (MRCKβ) Rac1, Cdc42 Cytoskeletal regulation
p70S6K Serine/threonine kinase Cdc42 Regulation of translation, cell cycle
PAK2 Serine/threonine kinase Rac1, Cdc42 Cytoskeletal organization, kinase activation
PKCα Serine/threonine kinase RhoA, Rac1, Cdc42 Signal transduction
PKN1,2 Serine/threonine kinase (Prk) RhoA Vesicle recycling, PLD1 activation
ROCK1,2 Serine/threonine kinase (Rok α,β) RhoA Cytoskeleton, blockage of cell contact inhibition
Stat3 Transcriptional factor Rac1, Cdc42 Transcription
α-Tubulin-1C Tubulin Rac1 Integral component of microtubules

proteins of the WASP/WAVE/Scar family and the diaphanous-
related formin proteins [44,45].

RhoA

In platelets, RhoA activation causes the initial platelet sphering
seen after activation [46]. Following stimulation of platelets
with thrombin or the thromboxane mimetic U46619, RhoA is
activated by ARHGEF1 (p115RhoGEF) [47]. This RhoA GEF
is stimulated by activity of Gα13 subunits of the thrombin and
thromboxane receptors [46,48,49]. RhoA may act through mDia1
to nucleate new actin filaments and through ROCK and LIM-
kinase to stabilize actin filaments. RhoA is also able to cause
myosin contraction through myosin phosphatase targeting protein
phosphorylation and hence inhibition of myosin light chain
(MLC) phosphatase activity [50].

RhoA regulation in platelets is complex, because after initial
activation, signalling from αIIbβ3 inhibits the GTPase allowing
spreading to occur [51]. Subsequently, this inhibition is released
and RhoA is then able to help stabilize thrombi under shear
[52], and to mediate stress fibre formation and clot retraction
[53]. In fibroblast cell cultures, RhoA expression promotes actin
stress fibre formation and focal adhesions [54]. Several RhoA
effector proteins have been implicated in the formation of these
structures, including ROCK and mDia1 [55,56]. Stress fibre
formation by thrombin-stimulated platelets also involves the

interaction of RhoA with mDia1 in a PI3K-dependent manner
(Figure 1) [57]. Studies of platelets lacking RhoA have confirmed
the data obtained by pharmacological means and show that RhoA
is required for integrin activation, granule secretion and clot
retraction and that these defects translate into haemostatic and
thrombotic defects in vivo [36].

Cdc42

Cdc42 is an established regulator of filopodia formation. The
prototypic pathway for filopodia formation involving Cdc42-
WASP-ARP2/3 was based on studies of fibroblasts [58], but other
Cdc42 driven pathways to filopodia also exist. Cdc42 binds the
formins mDia2 and mDia3 [59,60], and can activate IRSp53,
which binds mDia1 [61,62]. Cdc42 also promotes filopodia
formation through the Ena/VASP protein Mena [63]. Experiments
in fibroblasts show Cdc42 is not absolutely required for filopodia
formation, however [64], and additional novel Cdc42-independent
pathways have been identified involving the Rho GTPase Rif [65],
and lipid-phosphatase-related protein-1 (LPR1) [66].

Cdc42 is highly expressed in platelets (∼28000 copies) [38],
and is activated by thrombin stimulation or when platelets spread
on collagen [67,68]. Cdc42 translocates to the actin cytoskeleton
upon stimulation of protease activated receptors (PARs) or
P2Y receptors, an event that requires integrin activation, actin
polymerization and tyrosine kinase activity [69,70]. Although it is
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known to be activated in platelets, the extent of Cdc42’s functions
in platelets is presently unclear. Studies using the GTPase inhibitor
secramine A suggested that Cdc42 was required for platelet
filopodia formation [71,72]. The selectivity of this inhibitor has
been questioned, however [37], and two studies have since used
distinct mouse gene deletion strategies to study the function of
Cdc42 in platelets.

Use of a PF4-Cre driven system to produce megakaryocyte-
and platelet-specific deletion of the Cdc42 gene in mice resulted
in mild macrothrombocytopenia (∼500 × 103/μl) and shortened
platelet lifespans [37]. Critically and surprisingly, Cdc42− / −

platelets formed filopodia with normal morphology on fibrinogen-
coated surfaces [37], demonstrating that Cdc42-independent
pathways to filopodia formation exist in platelets. That study
found that Cdc42 was not fully redundant in platelets, however,
because filopodia formation on VWF was defective in Cdc42− / −

platelets suggesting Cdc42 may couple specifically to GPIb. The
principal phenotype of platelets from these mice was increased
secretion in response to GPVI agonists, thrombin and the
thromboxane mimetic U46619, suggesting that Cdc42 normally
functions as a negative regulator of platelet secretion. This
augmented secretion translated into increased thrombus formation
in vivo, but oddly these mice had increased tail-bleeding times.

A subsequent comparable study used an Mx-Cre gene deletion
system to induce excision of the Cdc42 gene in haematopoietic
cells by administration of polyinosinic acid–polycytidylic acid.
The phenotype of these mice is more consistent with the
hypothesized functions of Cdc42 in platelet function including
impaired filopodia formation and reduced spreading, secretion
and aggregation responses [73]. The discrepancies between these
studies may well relate to methodological differences, but leave
unanswered questions about platelet filopodia formation and have
fed debate in the field about the best strategy for generation of
platelet-specific conditional knockout mice [74]. It is clear from
the PF4-Cre mice data, however, that even when platelet Cdc42
protein expression is ablated, these platelets still retain certain
functions including filopodia formation and secretion. As such,
this finding suggests that other pathways to these processes exist
in platelets.

Rif

The small GTPase Rif (RhoF) was identified from partial cDNA
sequences during a search for novel Rho-family GTPases and
displays relatively low homology with other Rho proteins, with
the exception of RhoD [75]. In contrast with Rac1, RhoA and
Cdc42, Rif is expressed in only a subset of tissues [76]. Messenger
RNA for Rif has been identified in human megakaryocytes [77],
and in human and mouse platelets [35].

Our understanding of endogenous Rif is limited, although
it is expressed at higher levels in malignant lymphoma
cells, compared with normal B-lymphocytes, suggesting Rif
overexpression promotes malignant transformation [78]. Using
recombinant Rho protein affinity purification-mass spectrometry
(AP-MS) our group has identified interacting protein networks
for Rif in platelets and confirmed some of these interactions
by immunoblotting (Goggs, Mellor and Poole, unpublished
observations). Although the interaction of Rif with the formins
has been documented in other cell types, our work suggests Rif is
able to interact with mDia1 and mDia3 in platelets, which hints
at its function.

Ectopic Rif expression in cultured cells promotes formation of
long, thin, flexible, actin-rich protrusions [79,80]. In contrast, the
filopodia formed by Cdc42 are shorter, thicker and emerge only
from the cell periphery [81]. It is possible that filopodia induced

by Cdc42 and those induced by Rif represent different subtypes.
Alternatively, generation of distinct structures may result solely
from different molecular mechanisms of formation, since Rif
directly binds and activates both mDia1 and mDia2, whereas
Cdc42 does not directly activate mDia1 [59,61,65]. Rif also
generates filopodia through interactions with the formin proteins
mDia1 and mDia2 in various cell types in culture [61,65], and can
induce stress fibre formation in HeLa cells [82]. Once activated
by Rif, the formin proteins directly nucleate actin filament
polymerization at filopodia tips [65,83], and as such provide a
pathway to filopodia formation that is independent of Cdc42.
Both filopodia and stress fibres are important for platelet function,
enhancing cell–cell and cell–matrix interactions and facilitating
clot retraction respectively. Previous studies using platelets from
gene deletion mice suggest that the canonical pathway to filopodia
formation is not the only means by which filopodia form in
platelets [25,26,37], and functional overlap between Cdc42 and
Rif is probable on the basis of shared interactions with mDia2
[84].

Our group recently generated a novel constitutive Rif knockout
mouse line to test the hypothesis that Rif might provide an
alternative, Cdc42-independent route to filopodia formation and
to evaluate the role of Rif in platelets [85]. The mice were viable
and showed no overt phenotype. Evaluations of multiple aspects of
platelet function including assessments of inside-out and outside-
in signalling through integrin αIIbβ3 and secretion from α and
dense granules did not identify an essential role for Rif in mouse
platelets, however. In addition our data suggest that Rif is not
required for the actin rearrangements in megakaryocytes that
facilitate thrombopoiesis, since platelet counts were comparable
with wild-type controls [85]. Most importantly, static adhesion
and flow chamber assays suggested that Rif is not essential
for platelet filopodia formation or for manipulating the actin
cytoskeleton during other platelet shape change events.

Although the lack of an identified role for Rif in mouse platelets
does not preclude a role for the protein in human platelets,
the question of which Rho GTPase(s) regulate platelet filopodia
formation remains open. The most probable explanation for the
lack of an observed phenotype in the Rif− / − mice, is that Rif plays
redundant roles in platelets for which other Rho GTPases can
substitute. Phylogenetic analysis of Rho GTPases suggests that
the functions of Rif are most likely to overlap with RhoD [58],
but analysis of platelet mRNA sequences and proteomics data
suggests that RhoD is not expressed [35,38]. Interestingly, a recent
study of platelets in the mDia1− / − mouse found no defects in clot
retraction or in fibrinogen binding, P-selectin surface expression,
or cell spreading in response to either collagen-related peptide
(CRP) or thrombin stimulation [86]. As such, data from the
mDia1− / − mouse is consistent with analyses of Rif− / − platelets
and suggests pathways other than Rif-mDia1 regulate filopodia
formation in platelets. Functional overlap with Cdc42 seems most
likely given the common binding partners and data which suggests
Cdc42 and Rif co-operate during development of dendritic spines
from dendritic filopodia [87].

Rac

Although three Rac isoforms exist, only Rac1 and Rac2 are
expressed in platelets [38]. Rac1 activation occurs downstream
of collagen–GPVI interactions and thrombin activation of PARs
[39,88]. Platelet adhesion through integrin α2β1 initiates outside-
in signalling and activation of tyrosine kinases and small GTPases,
including Rac1, which is involved in cross-talk between integrins
in collagen-adherent platelets [89]. Studies using platelets
from Rac1/Rac2 double null mice suggest that Rac promotes
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lamellipodia formation but not filopodia formation [8]. The Rac1-
dependent formation of lamellipodia in platelets likely occurs via
WAVE/Scar activation of the ARP2/3 complex [90]. In other cells,
Rac acts in tandem with the protein gelsolin [91], generating novel
barbed ends from which the Rac-activated ARP2/3 complex can
nucleate new branched filaments at the lamellipodia leading edge
(Figure 1) [92]. Such links are plausible for platelets also, but
have not been explored to date. Rac1 is essential for GPVI-
regulated platelet spreading and for sustaining shear-resistant
platelet aggregates under flow both in vitro and in vivo and may
also be involved in granule secretion [43].

Data from a recent study of conditional Rac1/Cdc42 double null
mice suggest that additional understanding of the overlapping
roles of related proteins can emerge from such studies [93].
The platelet/megakaryocyte selective Rac1/Cdc42− / − mice had
marked macrothrombocytopenia, abnormal platelet ultrastructure
characterized by irregular granule distribution and impaired
platelet function. Some of these abnormalities overlapped with
those described for platelets from mice with single gene deletions,
for instance an inability of Rac1/Cdc42− / − platelets to spread on
fibrinogen. The present study again used the PF4-Cre system
for gene deletion and demonstrated that Rac1/Cdc42− / − platelets
are still able to form filopodia. Some novel abnormalities were
identified in the double gene deletion mice, particularly the
abolition of proplatelet formation, a phenotype that was associated
with defective tubulin organization, whereas actin assembly and
structure were largely preserved.

RhoG

RhoG is a classically regulated GTPase, most closely related
to Rac [94]. Several GEFs and guanine nucleotide dissociation
inhibitors (GDIs) for RhoG have now been identified [95–98],
as well as a number of key effector proteins. In various cell
types, RhoG regulates the actin cytoskeleton and is involved
in filopodia formation [99], membrane ruffling [100], neurite
outgrowth [101,102], T-cell spreading [103], dendritic spine
morphogenesis [104] and lamellipodia formation [105]. The
pathways to these various structures involve diverse effector
proteins and may be separately regulated by GEFs such as Vav
[106], and triple functional domain containing protein (TRIO)
[100,107]. Unusually, however, the involvement of RhoG in these
processes is frequently through upstream regulation of Rac1
and/or Cdc42.

The regulation of Rac1 by RhoG likely occurs through
recruitment of engulfment and cell motility (ELMO) family
proteins [105,108], and the dedicator of cytokinesis (DOCK)
family of Rac1 GEFs [104,109]. The complex of RhoG–ELMO–
DOCK1 proteins is required for integrin-mediated cell spreading
and neurite outgrowth in PC12 cells [108]. This work has
since been extended to demonstrate that Rac activation through
ELMO and DOCK proteins enables RhoG to control lamellipodia
formation in epithelia [110], spine morphogenesis in hippocampal
neurons [104], and front–rear polarity and cell migration in
keratinocytes [105]. The functions of RhoG in lymphocytes
have been investigated in cell culture systems [103], and using
constitutive RhoG− / − mice [111]. In B- and T-lymphocyte cell
culture systems, RhoG is activated by Vav-1 and enhances gene
transcription, particularly following ligation of the T-cell receptor
(TCR) [103].

It is apparent that many of the activities driven by RhoG
in other cells correspond closely with key platelet functions.
Furthermore, the potential for RhoG to control Rac and/or
Cdc42 in platelets is clearly of interest given the known

importance of Rac and Cdc42 to platelet function. The equivalent
receptors in platelets to lymphocyte TCRs are Fcγ RIIa – a low-
affinity immunoglobulin receptor (not present in mouse platelets)
– and the immunoreceptor tyrosine-based activation motif (ITAM)
domain containing GPVI–FcRγ complex, which is the principal
platelet receptor for collagen. By extension, this suggests that
in platelets, RhoG may be involved in the signalling pathways
downstream of GPVI.

Potential RhoG effector proteins in platelets have recently been
identified using GST–RhoG AP-MS assays [112]. Proteins that
specifically bound to active RhoG were identified and grouped
by function and the interaction of selected candidate proteins
confirmed by immunoblotting. Several plausible interactions were
identified, including with ELMO and DOCK1 (DOCK180) and
with regulators of the actin cytoskeleton and granule secretion
machinery components such as VAMP2. These interactions have
clear implications for the potential roles of RhoG in platelet
function in both haemostasis and thrombosis. The action of
ELMO is to enhance the GEF activity of DOCK1 for Rac.
Thus, RhoG may activate Rac and hence manipulate the actin
cytoskeleton or control cellular processes via protein and lipid
kinases [113]. RhoG also interacts with several other DOCK
proteins (DOCK5, DOCK10) expressed in platelets [114]. These
proteins are also GEFs for other Rho GTPases, suggesting that
RhoG may act as a hub controlling activation of several signalling
pathways.

Two groups, including our laboratory recently independently
investigated the role of RhoG in platelets using the same
RhoG− / − mouse line [112,115]. Both studies demonstrated that
integrin activation, aggregation, α and dense granule secretion in
response to GPVI agonists are significantly decreased in RhoG− / −

platelets, whereas responses to agonists of the PARs are normal.
This reduced secretion in the absence of RhoG diminished positive
autocrine and paracrine feedback and hence reduced platelet
activation. Secretion defects in the absence of RhoG led to
reduced formation of arterial thrombi, demonstrated using two
different thrombosis models. The contribution of RhoG to dense
granule secretion is particularly important in this context. Platelet
ADP secretion is necessary for stabilizing thrombi under shear
conditions and co-stimulation with ADP ameliorated the integrin
activation and aggregation defects in the RhoG− / − platelets. One
study suggested that RhoG activation by GPVI and the hemi-
ITAM domain containing receptor CLEC-2 are dissimilar since
aggregation in response to the CLEC-2 agonist, fucoidan, was
normal [115]. This may suggest that the FcRγ chains (associated
with GPVI but not with CLEC-2) may be involved in RhoG signal
transduction.

The thrombotic defects in RhoG− / − mice were not paralleled
by a haemostatic abnormality, however, since RhoG− / − mice
tail bleeding times were normal and there was no evidence of
a bleeding propensity. It is possible that intact PAR-mediated
signalling in RhoG− / − mice was sufficient to compensate for the
abnormal granule secretion after collagen stimulation, or that the
tail bleeding assay employed was insensitive to collagen pathway
defects [116].

The defect noted in RhoG− / − platelets downstream of GPVI
but not the PARs is most likely explained by the divergent
signalling pathways engaged by these receptors. Stimulation
of GPVI activates Syk (spleen tyrosine kinase), leading to the
assembly of the linker for activation of T-cells (LAT) signalsome,
consisting of various protein and lipid kinases and adapter
proteins. Syk activates PLCγ 2, which then activates PKC and
increases intracellular calcium. In contrast, PARs couple to Gαq

and Gα13. Signalling through Gα13 activates RhoA and hence
ROCK, whereas Gαq signals through PLCβ to activate PKC and
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increase intracellular calcium. Both pathways activate RhoG, but
it seems likely that RhoG activation is integral to the GPVI
pathway to granule secretion, whereas RhoG activation following
thrombin stimulation may be a secondary event.

Regulation of granule secretion by Rho GTPases can occur
through actin cytoskeletal manipulation, granule biogenesis and
intracellular calcium signalling regulation [37,39,117], but none
of these were responsible for the phenotype in RhoG− / − . Direct
links between active RhoG and regulators of these granule
secretion events, including interactions with regulators of the
actin cytoskeleton and the microtubule network, both of which
facilitate platelet granule release, might provide an explanation
[112,118]. Direct interactions between RhoG, SNARE proteins
and SNARE regulators represent an important avenue for future
study since similar connections have been described for Cdc42
and syntaxin [119].

RhoG regulation and relationships

The specific interaction of RhoG with ELMO and DOCK1 in
human platelet lysates, raises the possibility that RhoG might
activate Rac in platelets. Investigations of this possibility using
G-LISA assays, cofilin phosphorylation and platelet spreading
did not suggest a defect in Rac activation in the absence of
RhoG however [112]. This does not preclude Rac activation by
RhoG through DOCK and ELMO in platelets, but it does show
that Rac activation downstream of GPVI can occur via RhoG
independent routes, potentially through the GEF activity of Vav.

The GEF for RhoG in platelets is unknown. The LAT
signalsome that assembles after GPVI activation includes
the GEFs Vav1 and Vav3. In fibroblasts and in T-
lymphocytes, Vav proteins act as RhoG GEFs [111,120].
Interestingly, Vav1/Vav3− / − mice have a similar phenotype
to the RhoG− / − mice including reduced platelet aggregation
responses to CRP, but normal aggregation responses to
thrombin. Similarly, Vav1/Vav3− / − platelets also adhere poorly
to collagen under shear. In contrast with RhoG− / − platelets,
PLCγ 2 phosphorylation is reduced in response to CRP in
Vav1/Vav3− / − mice. This suggests that Vav is involved in PLCγ 2
phosphorylation and that RhoG lies downstream of this event,
consistent with RhoG activation being dependent on Vav when
platelets are stimulated with CRP.

Although Vav1 is phosphorylated in platelets by thrombin
stimulation [121], the phenotype of Vav1/Vav3− / − mice suggests
Vav proteins do not mediate platelet function following
PAR activation. In turn, this may explain why RhoG is
not required following thrombin stimulation of platelets. The
finding that PLCγ 2 phosphorylation is unaffected by RhoG
expression suggests that two signalling pathways may follow
LAT signalsome assembly: one mediated by PLCγ 2 and an
alternative route linking RhoG to granule secretion independent
of intracellular calcium or PKC, perhaps via direct interactions
with SNAREs.

A possible alternative to Vav is TRIO, a Rho-GEF that can
mediate activation of Rac1, RhoG and RhoA [122]. TRIO is
expressed at the transcript and protein levels in platelets, although
there are no reports of its function to date [35,38]. Recently,
it has been demonstrated in neuroblastoma cells that TRIO is
tyrosine phosphorylated by Fyn and that this phosphorylation
enhances Rac activation [123]. It is therefore plausible that
Fyn phosphorylation of TRIO might accelerate RhoG activation
downstream of GPVI in platelets.

Potentially significant differences exist in the recent analyses
[112,115] of RhoG− / − platelets, relating to the role of RhoG

in Syk phosphorylation and to the point of activation of RhoG
downstream of GPVI (Figure 2). One set of data [112] suggests
RhoG is activated downstream of Syk and that RhoG is not
required for Syk phosphorylation. In contrast, the other study
[115] found that CRP-induced Syk phosphorylation was reduced
in RhoG− / − platelets and that RhoG activation was independent
of Syk activity. That would suggest RhoG activation occurs
prior to Syk activation, which would support a role for TRIO
– phosphorylated by Fyn – as the GEF for RhoG. It may be that
differences in platelet preparations, assay conditions or timings
are responsible for these discrepancies in signal pathway analysis.
Identification of the GEFs for RhoG acting downstream of GPVI
in platelets may help to clarify this issue.

PROSPECTS FOR FUTURE INVESTIGATION

Perhaps because platelets rely on Rho GTPases to orchestrate
many of their critical functions, several early insights into the
function of Rho GTPases were gained from studies of platelets [1],
and they remain an excellent model system for the investigation of
Rho GTPase function. Although the anucleate nature of platelets
does preclude certain genetic manipulation, such disadvantages
are countered by the ease with which millions of platelets can
be acquired for study. Furthermore, the availability of multiple
in vitro and in vivo assays of platelet function enables the roles
of Rho GTPases to be dissected. There remain a number of Rho
GTPases in platelets including RhoH, RhoJ and RhoBTB that
are yet to be characterized, and a number of as yet unanswered
questions, discussed below, suggesting there is considerable scope
for further investigation in this field.

What is the function of Rif and how do platelets form filopodia?

Our recent investigation of the function of Rif in platelets
concluded that Rif is apparently dispensable for platelet function
because it has redundant roles with other GTPases, although
studies of megakaryocytes in Rif− / − mice might provide
additional information about the function of Rif in this cell
lineage. Additional insight into the functions of Rif might be
gained from looking at the functions of its effector proteins, since
some are novel and uncharacterized. Additional cell culture work
confirming and clarifying the nature of these interactions and
identifying the probable functions of these effectors could be
undertaken prior to returning to in vivo systems.

In order to test whether Cdc42 is compensating for Rif in
the Rif− / − mice, strategies to inhibit or prevent the function of
Cdc42 could be employed. Pharmacological inhibition of Cdc42
with compounds such as secramine A [124], has previously
been used to investigate the role of Cdc42 in platelets [125].
Since the selectivity of secramine A has been questioned, the
preferable alternative would be genetic manipulation to produce
mouse platelets devoid of both Rif and Cdc42. This is no small
undertaking, however, since Cdc42− / − platelets can only be
produced through conditional targeting. Although challenging to
perform, such follow-up work may be necessary to identify the
critical regulators of filopodia formation by platelets.

The functional importance of filopodia to platelets suggests
continued investigation of the mechanics of their formation is
warranted. Various candidate proteins have been investigated
but few critical proteins have been identified. A systematic,
methodical approach investigating both Rho GTPases and their
effector proteins will likely be necessary in order to identify the
key regulators. It was reported in 2002 that ARP2/3 activity is
essential for platelet filopodia formation [126], but this has not
been replicated to date. This is of particular interest in the light
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Figure 2 A schematic overview of the role of RhoG in the regulation of platelet secretion

The interaction of fibrillar collagen with GPVI leads to the dimerization of the receptor and the association of the ITAM domains of the FcRγ chains. These are phosphorylated by Src family kinases
Lyn and Fyn. In the model suggested by the Kunapuli group data, Fyn phosphorylates the Rho GEF TRIO, which in turn activates RhoG [115]. In the model supported by data from our laboratory
[112], the activity of the Src family kinases leads to the activation of Syk [112]. The activity of Syk then assembles various signalling adapters, kinases and GEF proteins including Vav, which leads to
the GTP loading of RhoG. Active RhoG then interacts with SNARE regulators and SNARE proteins including VAMP2 to promote dense granule secretion. Autocrine and paracrine feedback signalling
then occurs through P2Y12 receptors.

of evidence that Cdc42 may be dispensable for platelet filopodia
formation and given the potential for interactions between Rif and
ARP2/3 complex components to occur in platelets. The lack of
previous studies related to the ARP2/3 complex in platelets may
relate to the lack of viable knockout mice. For instance constitutive
deletions of ARPC3 or APRC4 are both embryonically lethal,
whereas work has progressed only to ES cell development for
knockouts of APR2 and APRC5 [127].

Further study of platelet formin proteins is also warranted.
Platelets express multiple formins and here, as with the
GTPases, there is likely to be redundancy. Targeted inhibition
of these proteins potentially in combination with pharmacological
inhibition or gene deletion of probable Rho GTPase activators may
aid the search. For instance mDia1 is known to be dispensable for
platelet filopodia formation [86]. This formin protein binds to both
Rif [61], and to Cdc42 via IRSp53 [62]. It would be intriguing
to see what effects removal or inhibition of multiple formin
proteins for example mDia1 and mDia3 (leaving only mDia2) or
combined deletion of Cdc42 and mDia1 (favouring Rif–mDia3)
might produce in platelets. The availability of all of these relevant
mice lines means that such experiments are within reach.

What GEFs, GAPs and GDIs regulate platelets?

Signalling via small GTPases is determined by their spatial
and temporal distribution and by numerous regulating proteins
(Table 2) [128]. Rho GTPases may either be GDP-loaded and

inactive or GTP-loaded and active. Since GDP is typically tightly
bound and the rate of hydrolysis of GTP is slow, Rho GTPases
require the activity of two additional types of protein to function
efficiently [129]. Activation of Rho GTPases occurs via the GTP
loading activity of GEFs, which catalyse the exchange of bound
GDP for GTP.

To facilitate the regulation of the various platelet Rho GTPases,
platelets contain a large number of Rho GEFs. Some GEFs,
including PIP3-dependent Rac exchanger 1 protein (PREX-1),
specifically interact with certain GTPases in vivo [130], whereas
others such as Vav are more promiscuous and can activate multiple
Rho family members. Many GEFs including Vav and RhoGEF12
exist in auto-inhibited conformations. In the case of Vav, activation
of the GEF requires phosphorylation of several tyrosine residues
to unlock the protein and expose the GEF active site [129].
Such regulation presumably explains why Vav associates with the
LAT signalsome of tyrosine kinases assembled following collagen
stimulation of GPVI [131].

In contrast, TRIO has not been characterized in platelets to
date, although various reagents exist that would enable initial
investigation of its expression and regulation. For instance, it has
been demonstrated that TRIO is phosphorylated at Tyr2622 by
the Src kinase Fyn in response to upstream receptor stimulation
in cultured neurons [123]. An inhibitor of TRIO (ITX-3) has also
recently been reported and could be used to determine if TRIO
activates RhoG in platelets and more generally to investigate
the role of TRIO in platelets [132]. Knockout mice with both
conditional and constitutive targeted mutations of TRIO have
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Table 2 A list of the most prevalent Rho GTPase GEFs, GAPs and GDIs in human platelets with their known target GTPases

The list was based on Takai et al. [147] augmented with information from domain homology searches conducted using protein sequence (www.uniprot.org/) and protein interaction (string-db.org/)
databases. Table entries were cross-referenced against two recent proteomic databases such that only proteins known to be expressed are listed [145,146], and then ranked using mRNA transcript
levels from human platelets [35].

UniProt ID Gene name Protein name GTPase target

Q9NZN5 ARHGEF12 Rho guanine nucleotide exchange factor 12 RhoA, RhoB, Rac
Q5JSP0 FGD3 FYVE, RhoGEF and PH domain-containing protein 3 Cdc42
Q92888 ARHGEF1 Rho guanine nucleotide exchange factor 1 RhoA
Q9NR81 ARHGEF3 Rho guanine nucleotide exchange factor 3 RhoA, RhoB, Cdc42
O60229 KALRN Kalirin Rac
Q8TCU6 PREX1 P-Rex1 (PtdIns(3,4,5)-dependent Rac exchanger 1) Rac
Q9UKW4 VAV3 Guanine nucleotide exchange factor VAV3 Rac, Cdc42
O75962 TRIO Triple functional domain protein (TRIO) Rac, RhoA
Q15052 ARHGEF6 Rho guanine nucleotide exchange factor 6 Rac, Cdc42
Q8NF50 DOCK8 Dedicator of cytokinesis protein 8 Rac, Cdc42
Q6ZSZ5 ARHGEF18 Rho guanine nucleotide exchange factor 18 RhoB, Rac
Q9H7D0 DOCK5 Dedicator of cytokinesis protein 5 RhoA, Rac
Q92974 ARHGEF2 Rho guanine nucleotide exchange factor 2 RhoA
Q07889 SOS1 Son of sevenless homologue 1 (SOS-1) Rac
Q92608 DOCK2 Dedicator of cytokinesis protein 2 Rac
P15498 VAV1 Proto-oncogene Vav Rac, Cdc42
Q9NZM3 ITSN2 Intersectin-2 Cdc42
Q5T5U3 ARHGAP21 Rho GTPase-activating protein 21 RhoA, Cdc42
Q8N392 ARHGAP18 Rho GTPase-activating protein 18 Rac, RhoQ, RhoU
O43182 ARHGAP6 Rho GTPase-activating protein 6 Rac
P11274 BCR Breakpoint cluster region protein Rac, Cdc42
Q96P48 ARAP1 Arf-GAP with Rho-GAP, ANK repeat, PH domains 1 ?
Q9P107 GMIP GEM-interacting protein RhoA
P98171 ARHGAP4 Rho GTPase-activating protein 4 Rac
Q92502 STARD8 StAR-related lipid transfer protein 8 RhoA, Cdc42
Q07960 ARHGAP1 Rho GTPase-activating protein 1 Cdc42
Q7Z6I6 ARHGAP30 Rho GTPase-activating protein 30 Rac, RhoH
Q9BRR9 ARHGAP9 Rho GTPase-activating protein 9 Cdc42, Rac, RhoA
O60890 OPHN1 Oligophrenin-1 RhoA, Rac
A1A4S6 ARHGAP10 Rho GTPase-activating protein 10 RhoA, Cdc42
P42331 ARHGAP25 Rho GTPase-activating protein 25 ?
Q12979 ABR Active breakpoint cluster region-related protein Rac, Cdc42
Q6ZUM4 ARHGAP27 Rho GTPase-activating protein 27 Cdc42, Rac
Q8N103 TAGAP T-cell activation Rho GTPase-activating protein ?
P52566 ARHGDIB Rho GDP-dissociation inhibitor 2 Rac, RhoA, RhoB, RhoH
P52565 ARHGDIA Rho GDP-dissociation inhibitor 1 Rac, RhoA, RhoH

been produced and would also facilitate detailed investigation
of the role of this GEF in platelets [133].

Interestingly, in a recent AP-MS study using GST-RhoG, no
probable GEF proteins for RhoG were identified [112]. This
was likely due to the use of a minimally truncated native RhoG
bait protein. Although this protein was suitable for nucleotide
exchange and the identification of GTPase activating proteins
(GAPs) and effector proteins, it was less suitable for identification
of GEFs. Studies that specifically aimed to identify GEF proteins
have employed dominant negative mutants with single amino acid
substitutions (RhoG G15A, RhoA G17A) [134,135]. These amino
acid substitutions cause the protein to bind very poorly to both
GDP and GTP [136], making the protein essentially nucleotide-
free. This state of Rho GTPase proteins is an intermediate within
the nucleotide exchange reaction enabling these mutant proteins
to form high affinity binary complexes with GEFs [137,138].

Currently, the roles of GAPs in platelets are poorly
characterized [1,139]. Several Rho GAPs in platelets have now
been described including p190RhoGAP which acts on RhoA [1],
nadrin which acts on Rac and Cdc42 [140], and oligophrenin-
1 [141], which has recently been demonstrated to play a role
regulating platelet filopodia formation [142]. Use of constitutively

active Rho GTPase mutants to preferentially capture GAPs may
increase the likelihood of identifying these regulators in platelets.

Four Rho GDIs are expressed in platelets, and proteomics
data suggest that RhoGDIα is highly expressed (21700 copies
per platelet) and therefore represents a plausible candidate for
the inhibitory regulation of Rho GTPases in platelets [38]. Our
lack of understanding of GDI function in platelets was recently
highlighted, and any data regarding the functions of these proteins
in platelets will be novel [1].

How do Rho GTPases contribute to the pathological roles of
platelets?

Rho GTPase regulated platelet secretion is likely to be involved in
the roles played by platelets in the development and progression
of various disease processes including atherogenesis, asthma
and cancer. Few (if any) suitable agents exist for the selective
inhibition of Rho GTPases to reduce platelet secretion, however,
selective modulation of Rho GTPase activity through inhibition of
upstream GEFs may hold more promise [95,132,143]. In addition,
investigation of the pathogenesis of inflammatory or neoplastic
disease processes within mice lacking specific Rho GTPases may
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provide insights into the role of platelet secretion in disease and
determine if such GEF inhibition holds any promise for future
therapeutic interventions.
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