At least 50% of the major axonal membrane lipid, phosphatidylcholine, of rat sympathetic neurons is synthesized in situ in axons [Posse de Chaves, Vance, Campenot and Vance (1995) J. Cell Biol. 128, 913-918]. In the same study we reported that, in a choline-deficient model for neuron growth, phosphatidylcholine synthesis in cell bodies is neither necessary nor sufficient for growth of distal axons. Rather, the local synthesis of phosphatidylcholine in distal axons is required for normal axon growth. We have now used three alkylphosphocholines (hexadecylphosphocholine, dodecylphosphocholine and octadecylphosphocholine) as inhibitors of PtdCho biosynthesis in a compartmented model for culture of rat sympathetic neurons. The experiments reveal that alkylphosphocholines decrease the uptake of choline into these neurons and inhibit PtdCho synthesis, but not via an effect on the activity of the enzyme CTP: phosphocholine cytidylyltransferase. We also show that when the distal axons, but not the cell bodies, are exposed to alkylphosphocholines, axonal elongation is inhibited, which is consistent with the hypothesis that phosphatidylcholine synthesis in axons, but not in cell bodies, is required for axonal elongation. The inhibitory effect of alkylphosphocholines on axon growth is most likely not mediated via a decrease in the activity of protein kinase C, since when this enzyme activity is down-regulated by treatment of the cells with phorbol ester, the alkylphosphocholines retain their ability to inhibit axonal growth.

This content is only available as a PDF.
You do not currently have access to this content.