1. A cell fraction rich in Golgi apparatus was isolated from the livers of guinea pigs fed on a lipid-rich diet (1.6% cholesterol, 15% corn oil). 2. The Golgi cisternae and secretory vesicles contained electron-dense particles which were tentatively identified as VLD (very-low-density) and LD (low-density) lipoproteins. Particles of moderate electron density, 150–500nm in diameter, were seen associated with membranous elements of the Golgi-apparatus cell fraction. Disruption of this cell fraction permitted the release of these three species of particles, which were separated into particulate lipid, and VLD and LD lipoproteins. 3. The large particles of moderate electron density, isolated as particulate lipid, were distinct from both species of Golgi particles in their chemical composition and in possessing an immunochemically unreactive apolipoprotein(s). Morphological observations suggest that the particulate lipid arose from cytoplasmic lipid droplets which were present as contaminants of the Golgi-rich fraction. 4. The chemical and immunochemical results are consistent with the suggestion that the Golgi LD particles are precursors of the VLD particles, into which they may be transformed by the addition of both triglyceride and cholesteryl ester. The present results provide further support for the proposal that the Golgi VLD particles are precursors of the serum VLD lipoproteins in the guinea pig. 5. Hepatic Golgi VLD particles isolated from guinea pigs fed on the lipid-rich diet contained significantly higher molar amounts (relative to protein) of both cholesteryl ester and triglyceride than similar particles from animals fed on a normal diet. These results suggest that the type of Golgi VLD particle produced from the LD particle is a direct consequence of the amount and composition of the dietary lipid. 6. Hepatic Golgi LD particles isolated from guinea pigs fed on different diets were similar in chemical composition and contained approx. 50% by weight of phospholipid. We conclude that the Golgi LD particle is normally present in the Golgi-apparatus cell fraction from guinea-pig liver, and may represent the end product of lipoprotein biosynthesis in the smooth endoplasmic reticulum. 7. The serum LD lipoproteins and Golgi LD particles were quite distinct in chemical composition. However, these two lipoprotein species were immunochemically identical and exhibited a similar range of flotation rate. It appears unlikely that the Golgi LD particles are secreted as the precursors of the serum LD lipoproteins.

This content is only available as a PDF.