When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.

This content is only available as a PDF.