Antisera against a partially purified prolactin-receptor preparation derived from pregnant-rabbit mammary glands were generated in guinea pigs. On double immuno-diffusion, each antiserum produced a single precipitin line with the prolactin receptors. The anti-receptor sera also specifically inhibited the binding of 125I-labelled sheep prolactin to membrane particles as well as to highly purified prolactin receptors derived from the rabbit mammary glands. The same antisera, however, had no effect on the binding of 125I-labelled insulin to the same membranes. These antisera did not bind or destroy prolactin. Moreover, the binding of 125I-LABELLED PROLACTIN TO MEMBRANE PARTICLES DErived from different tissues from a number of species was also inhibited by the antisera, thus suggesting that the immunological determinants of the prolactin receptors are similar in various tissues derived from different species. The factors in the antisera that were responsible for inhibiting the binding of 125I-labelled prolactin to its receptors were found to be associated with the gamma-globulin fraction. In addition, 131I-labelled gamma-globulins derived from one antiserum were shown to bind to membrane particles derived from mammary glands, and an increase in binding of gamma-globulin was accompanied by a decrease in binding of prolactin. Kinetic analyses of inhibition of 125I-labelled prolactin binding by antisera by using the methods of Lineweaver & Burk [J. Am. Chem. Soc. (1934) 56, 658-666] and Dixon [Biochem. J. (1953) 55, 170-171], revealed that the mechanism is a hyperbolic competitive inhibition. The demonstration of hormone-receptor-antibody complexes further favours this mechanism. The availability of anti-receptor sera should facilitate studies on the functional role as well as other biochemical, immunological and physiological properties of the prolactin receptors.

This content is only available as a PDF.