The membrane components of rabbit bone-marrow-bound erythroid cells were characterized and compared with those of circulating rabbit erythroid cells. By the criteria of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, radioiodination with lactoperoxidase and binding of radioiodinated lectins, the two circulating forms of erythroid cells (the reticulocyte and erythrocyte) have the same surface components. In contrast, bone-marrow-bound nucleated erythroid cells have a unique set of membrane surface components which are completely different from those found on circulating cells. Of the ten Coomassie-Blue-staining proteins present in nucleated erythroid-cell plasma-membrane preparations, eight are accessible at the extracellular surface, and all of these are lectin-binding glycoproteins. Bone-marrow erythroid cells separated according to age by velocity sedimentation were also studied. The changeover in surface components occurs after the last nucleated stage of the erythroid cells (the orthochromatic normoblast). We discuss the alterations in membrane surface components observed during the differentiation of the erythroid-cell series in relation to the transition from bone-marrow-bound to circulating forms of these cells. We suggest that the change in membrane surface components may be linked to the loss of the nucleus from the normoblast and the entry of the erythroid cell into the circulation.

This content is only available as a PDF.