1. Chronic ethanol administration to rats was previously shown to enhance brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain secondarily to the NAD(P)H-mediated inhibition of liver tryptophan pyrrolase activity. 2. At 24h after ethanol withdrawal, all the above effects were observed because liver [NAD(P)H] was still increased. By contrast, all aspects of liver and brain tryptophan metabolism were normal at 12 days after withdrawal. 3. At 7–9 days after withdrawal, brain 5-hydroxytryptamine synthesis was decreased, as was tryptophan availability to the brain. Liver tryptophan pyrrolase activity at these time-intervals was maximally enhanced. 4. Administration of nicotinamide during the withdrawal phase not only abolished the withdrawal-induced enhancement of tryptophan pyrrolase activity on day 8, but also maintained the inhibition previously caused by ethanol. Under these conditions, the withdrawal-induced decreases in brain 5-hydroxytryptamine synthesis and tryptophan availability to the brain were abolished, and both functions were enhanced. Nicotinamide alone exerted similar effects in control rats. 5. It is suggested that ethanol withdrawal inhibits brain 5-hydroxytryptamine synthesis by decreasing tryptophan availability to the brain secondarily to the enhanced liver tryptophan pyrrolase activity. 6. The results are discussed in relation to the possible involvement of 5-hydroxytryptamine in dependence on ethanol and other drugs.

This content is only available as a PDF.