Lysyl oxidase activity against both collagen and elastin substrates has been examined in the culture medium of skin fibroblasts derived from unrelated patients with Menkes' syndrome and from control subjects. The medium of three Menkes' fibroblast lines showed 3–30% of the activity present in the medium of control fibroblasts, against a purified collagen substrate. Lysyl oxidase activity in the culture medium of two of the Menkes' fibroblast lines was also examined by using a crude aortic-elastin substrate and was similarly decreased in comparison with that in the medium of control fibroblasts. Lysyl oxidase activity in the medium of a fourth fibroblast line, derived from a foetus with Menkes' syndrome, was 42% of that in the medium of control fibroblasts derived from a 1-day-old baby against a collagen substrate, and 26% of that in control fibroblast medium against an elastin substrate. The copper content of the cell layers of the Menkes' fibroblast cultures was elevated in comparison with normal fibroblast cultures, as has previously been reported to be characteristic of such cells. It is suggested that the decrease in lysyl oxidase activity would help to explain the connective tissue defects observed in Menkes' syndrome, and that this reduction, in conjunction with the elevated concentrations of cellular copper, would support the hypothesis that a functional intracellular copper deficiency exists in Menkes' syndrome.

This content is only available as a PDF.