Arterial basement-membrane-like material was isolated from rabbit aortic myomedial cell cultures by sonication and differential centrifugation. Isolated basement-membrane-like material was shown to be free of both cellular and matrix contaminants, on the basis of determinations of DNA, RNA, cholesterol, phosphorus and (Na+ + K+)-activated ATPase, combined with electron microscopy. Amino acid analyses showed that arterial basement-membrane-like material was composed of predominantly non-collagenous amino acids. Evaluated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, reduced basement-membrane-like material comprised six major and about 30 minor components in the Mr range 10 000-600 000. One of the major peptides (Mr 225 000) was disulphide-linked. Periodic acid-Schiff staining of gels indicated that most high-molecular-weight components were glycoproteins. Two-dimensional gel electrophoresis resolved reduced basement-membrane-like material into more than 100 components, with pI from 5 to 7. The disulphide-linked Mr-225 000 peptide appeared heterogeneous, with pI of 5.6-6.0, and was considered to represent fibronectin. All major peptides were of non-collagenous nature, on the basis of their susceptibility to pepsin and resistance to collagenase. Purified myomedial basement-membrane-like material contained collagenous peptides, as indicated by the presence of hydroxyproline and hydroxylysine. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of pepsin-treated and reduced basement-membrane-like material revealed five high-molecular-weight collagenous components appearing in the Mr range 105 000-375 000 relative to type I collagen standards.

This content is only available as a PDF.