A panel of lectins was used to analyse glycoproteins of normal granulocytes and leukaemic myeloid cells. The glycoproteins of detergent-solubilized whole cells were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and their lectin-binding properties determined by incubation of the fixed gels with radioiodinated lectins. Normal granulocytes and leukaemic myeloid cells in different stages of maturation possess a cell-surface sialic acid-rich glycoprotein of apparent mol.wt. 115 000 (GP115), that can be labelled by both the lactoperoxidase and periodate/NaB3H4 cell-surface labelling techniques. The sialoglycoprotein of leukaemic myeloblasts has a slightly lower apparent mol.wt., 112000 (GP112). After neuraminidase treatment before cell solubilization, both GP115 and GP112 bind the lectins from Arachis hypogaea (peanut) and Helix pomatia (snail) and have an increased apparent molecular weight of 125000. Two concanavalin A-binding glycoproteins of apparent mol.wts. 98000 and 90000 are present in leukaemic myeloblasts. Concanavalin A binding to these glycoproteins is decreased in more mature leukaemic cells and absent in granulocytes. As concanavalin A binding decreases in the maturer forms, there is a concomitant increase in the binding of Ricinus communis (castor bean) and Maclura aurantiaca (osage orange) lectins to these glycoproteins. Whole granulocytes, but not leukaemic myeloblasts, contain a major cell-surface concanavalin A binding glycoprotein of apparent mol.wt. 130000, which is labelled by the periodate/NaB3H4 technique. Concanavalin A binding to this glycoprotein increases as the morphology of leukaemic cells approaches that of mature granulocytes.

This content is only available as a PDF.