The detergent lauryl maltoside abolishes respiratory control and proton ejection by cytochrome c oxidase-containing proteoliposomes over a narrow concentration range. Expression of cryptic activity (inward-facing oxidase) is released over the same concentration range. Catalytic functions (Vmax. and Km) of the enzyme are not changed by the detergent. Lipid micelles containing detergent bind approximately the same amount of cytochrome c as do vesicles containing an equivalent amount of lipid. Uncoupler-insensitive proton release is seen when proteoliposomes are pulsed with ferrocytochrome c at low ionic strength. Such uncoupler-insensitive acidification is not seen at higher ionic strength, nor with oxygen pulses of anaerobic solutions previously incubated with cytochrome c. Vesicles at low ionic strength catalyse cytochrome c autoxidation; this process can mimic proton re-equilibration in systems that have pumped protons from inside to the bulk phase. Proton re-equilibration following a pulse of cytochrome c or oxygen is multiphasic. The slowest phases are attributed to vesicle heterogeneity, some internal alkali being retained within vesicles of low intrinsic proton permeability. This can be overcome by the addition of either very low levels of carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone or high levels of valinomycin.

This content is only available as a PDF.