In this work the two interconvertible forms of inorganic pyrophosphatase (EC of Streptococcus faecalis were shown to differ in kinetics. The highly active form of the enzyme was more sensitive to the changes in the Mg2+ concentration, and thus also more sensitive to the inhibition caused by ATP, which competes with PPi for the chelation of Mg2+ ions. We have previously described a kinetic model for the less-active form of S. faecalis inorganic pyrophosphatase [Lahti & Jokinen (1985) Biochemistry 24, 3526-3530]. The kinetic model of the highly active enzyme form is proposed to be a modification of the model of the less-active form in which enzyme activation by free Mg2+ is necessary for the reaction to occur. In this model the enzyme exists in two states, referred to as R- and T-states. In the absence of ligands the enzyme is in the T-state. R-state, i.e. the catalytically active state, exists only in the presence of free Mg2+. Mg1PPi2- is the primary substrate, and free pyrophosphate is a weak inhibitor that cannot serve as a substrate for the highly active form of S. faecalis inorganic pyrophosphatase. This model closely resembles that previously presented for yeast inorganic pyrophosphatase.

This content is only available as a PDF.