Neurofilaments freshly isolated from bovine spinal cord form a reversible gel in vitro, consisting of nearly parallel and interlinked filaments organized in bundles. This phenomenon is obtained above a critical neurofilament concentration and is highly sensitive to denaturation. No gelation occurs with neurofilaments reconstituted from urea-solubilized subunits. The velocity of the gelation kinetics, optimum at a slightly acidic pH, is inhibited by low and high ionic strength and activated by millimolar concentrations of Mg2+ and other bivalent cations. No protein other than the purified neurofilament preparation itself (80-95% neurofilament triplet) is necessary for the formation of a gel. However, purified cytoskeletal proteins from microtubules and neurofilaments influence the viscosity of the native preparation. These observations suggest a reticulation in vitro between neurofilaments, dependent upon a fragile conformation of the polymers and possibly mediated through the high-Mr neurofilament subunits (200 kDa and 150 kDa). The significance of these results is discussed with regard to the inter-neurofilament cross-bridging in situ involving the 200 kDa subunit described by Hirokawa, Glicksman & Willard [(1984) J. Cell Biol. 98, 1523-1536].

This content is only available as a PDF.