The incorporation of 32P from [gamma-32P]ATP into intracellular proteins was studied in electrically permeabilized rat islets of Langerhans. Ca2+ (10 microM), cyclic AMP (100 microM) and a protein kinase C-activating phorbol ester, phorbol 13-myristate 12-acetate (PMA; 100 nM) produced marked changes in the phosphorylation state of a number of proteins in permeabilized islets after incubation for 1 min at 37 degrees C. Ca2+ modified the effects of cyclic AMP and PMA on protein phosphorylation. Noradrenaline (10 microM) had no detectable effects on Ca2+-dependent protein phosphorylation, but significantly inhibited Ca2+-induced insulin secretion from electrically permeabilized islets. These results suggest that electrically permeabilized islets offer a useful model in which to study rapid events in protein phosphorylation as a mechanism of stimulus-secretion coupling. If the rapid Ca2+-induced effects on protein phosphorylation are involved in the control of insulin secretion, the results of this study also imply that part of the catecholamine inhibition of insulin secretion occurs at a stage in the secretory pathway beyond the activation of the regulated protein kinases.

This content is only available as a PDF.