The inhibitory properties of a series of synthetic epimers and analogues of swainsonine towards the multiple forms of human alpha-mannosidases were studied in vitro and in cells in culture. Of the five epimers tested, only the 8a-epimer and 8,8a-diepimer of swainsonine were specific and competitive inhibitors (Ki values of 7.5 x 10(-5) and 2 x 10(-6) M respectively) of lysosomal alpha-mannosidases in vitro and induced storage of mannose-rich oligosaccharides in human fibroblasts in culture. The structures of these storage products indicated that processing alpha-mannosidases had also been inhibited. This was consistent with the observed inhibition in vitro of these enzymes by these compounds. In contrast, the 8-epimer, 1,8-diepimer and 2,8a-diepimer of swainsonine had no appreciable effect on any alpha-mannosidases. The corresponding open-chain analogues of swainsonine, namely 1,4-dideoxy-1,4-imino-D-mannitol, of the 8a-epimer, namely 1,4-dideoxy-1,4-imino-D-talitol, and of the 8,8a-diepimer, namely 1,4-dideoxy-1,4-imino-L-allitol, were weaker competitive inhibitors of lysosomal alpha-mannosidase, with Ki values of 1.3 x 10(-5), 1.2 x 10(-4) and 1.2 x 10(-4) M respectively. These analogues also proved less effective at inducing oligosaccharide accumulation and in disturbing glycoprotein processing. These compounds offer the opportunity to determine which alterations in the chirality of the swainsonine molecule affect its inhibitory specificity. A comparison of their biological activities has identified reagents that will be useful for studying steps in the biosynthesis and catabolism of glycoproteins and that may be of potential value in chemotherapy.

This content is only available as a PDF.