Changes in the expression of heavy chains of myosin during development determine the functional characteristics of striated muscles. The distribution of heavy-chain isoforms of smooth-muscle myosin was determined in the airways of adult and infant humans to see whether it might underlie the hyperreactivity of human airways. The protein bands corresponding to myosin were separated using SDS/polyacrylamide-gel electrophoresis (4% gels) and identified by immunoblotting using both monoclonal and polyclonal antibodies against smooth-muscle myosin and non-muscle myosin. The relative proportion of each heavy chain stained by Coomassie Blue was measured by densitometric scanning. Three major bands corresponding to myosin heavy-chain isoforms were found; the two slower migrating bands (MHC1 and MHC2) were smooth-muscle myosin, and the third band was non-muscle myosin. The MHC1/MHC2 ratio was 0.69:1 in adult bronchus, and in infant bronchus and trachea. This contrasted with the airway smooth muscle in pigs, which was run concurrently, where the smooth-muscle heavy-chain ratio changed with development [Mohammad & Sparrow (1988) FEBS Lett. 228, 109-112]. The non-muscle myosin heavy chain comprised 63% of the smooth-muscle myosin. In both adult and infant lungs an additional putative myosin heavy chain which migrated slightly more rapidly than non-muscle myosin heavy chain was identified using the monoclonal smooth-muscle myosin antibody BF 48. This was unique to the human species.

This content is only available as a PDF.