A biochemical analysis has been carried out of metabolically labelled proteoglycans and glycosaminoglycans synthesized by a haemopoietic multipotential stem cell line, FDCP-mix. The only proteoglycan identified in these multipotential cells was a homogeneous component that contained chondroitin 4-sulphate chains (Mr approximately 10,000) arranged in close proximity in a proteinase-resistant domain of the protein core. Small quantities of free chondroitin 4-sulphate were also detected. Following a 48 h incubation with Na2 35SO4 the majority of the 35S-radiolabelled proteoglycans (approximately 80%) were associated with the cells, mainly in an intracellular compartment, and the remaining 20% were in the culture medium. Pulse-chase studies demonstrated two turnover pathways for the newly synthesized cellular proteoglycans. In the minor pathway, the proteoglycans were secreted rapidly into the medium without any discernable structural modification. In the major pathway the proteoglycans seemed to be transferred into a storage compartment from which the intact macromolecules were not secreted. Eventually, these proteoglycans were degraded to yield free polysaccharide chains and these chains were then released into the medium, but only at a relatively slow rate. There was very little intracellular degradation of chondroitin sulphate chains. The pathway to polysaccharide secretion was a slow stepwise process with a time-lag of about 5 h between proteoglycan synthesis and the appearance of free chondroitin sulphate and a second time-lag, also of about 5 h, before these chains began to be secreted. The existence of separate secretory pathways for proteoglycans and chondroitin sulphate chains is an interesting characteristic that seems to distinguish proteoglycan metabolism in primitive multipotent stem cells from related metabolic processes in mature haemopoietic cells.

This content is only available as a PDF.