C1r2C1s2 is a subcomponent of first component C1 of the complement cascade. Previously two distinct models for its structure have been described, in which C1r2C1s2 is either a linear rod-like assembly of the globular domains found in each of C1s and C1r, or these domains are arranged to form an asymmetric X-shaped structure. These two models were evaluated by using hydrodynamic simulations and neutron scattering. The data on C1s, C1s2 and C1r are readily represented by straight hydrodynamic cylinders, but not C1r2 or C1r2C1s2. Tests of the X-structure for C1r2 and C1r2C1s2 successfully predicted the experimental sedimentation coefficients, thus supporting this model. Neutron scattering analyses on C1s and C1r2 are consistent with a linear structure for C1s, but not for C1r2. An X-shaped structure for C1r2 was found to give a good account of the neutron data at large scattering angles. The total length of the C1s and C1r monomers was determined as 17-20 nm, which is compatible with electron microscopy. On the basis of the known sequences of C1r and C1s, this length is accounted for by a linear arrangement of a serine-proteinase domain (length 4 nm), two short consensus repeat domains (2 x 4 nm), and a globular entity containing the I, II and III domains (4-7 nm).

This content is only available as a PDF.