Recent evidence indicates that H+ extrusion in macrophages is in part accomplished by a H(+)-ATPase of vacuolar type. The presence and plasma-membrane localization of such a mechanism in adherent resident macrophages was verified by inhibition of H+ extrusion, monitored by changes in both cytosolic pH (pHi) and extracellular pH, with low concentrations of the H(+)-ATPase inhibitors N-ethylmaleimide and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole. The H(+)-ATPase was operative at physiological pHi levels, thus contributing to maintenance of steady-state pHi. It was further shown to be sensitive to the plasma-membrane potential, with hyperpolarization being strongly inhibitory. In addition, H+ extrusion mediated by the H(+)-ATPase and the generation and release of lactic acid caused acidification of the pericellular space and could enable secreted lysosomal hydrolases to act extracellularly.

This content is only available as a PDF.