It has been shown previously that the thioredoxin system (thioredoxin + thioredoxin reductase + NADPH) may replace dithiothreitol (DTT) as a cofactor for vitamin KO and K reductase in salt-washed detergent-solubilized bovine liver microsomes. Here we demonstrate that the system can be improved further by adding protein disulphide-isomerase (PDI) to the components mentioned above. Moreover, NADPH may be replaced by reduced RNAase as a hydrogen donor. In our in vitro system the various protein cofactors were required at concentrations 2-5 orders of magnitude lower than that of DDT, whereas the maximal reaction rate was about 3-fold higher. PDI stimulated the thioredoxin-driven reaction about 10-fold, with an apparent Km value of 8 microM. These data suggest that in the vitro system the formation of disulphide bonds is somehow linked to the vitamin K-dependent carboxylation of glutamate residues. In vivo, both disulphide formation and vitamin K-dependent carboxylation are post-translational modifications taking place at the luminal side of the endoplasmic reticulum of mammalian secretory cells. The possibility that the reactions are also coupled in vivo is discussed.

This content is only available as a PDF.