Synchronized HeLa cells depleted of polyamines by alpha-difluoromethylornithine exhibited substantially decreased DNA synthesis, and proliferation ceased after the release of the cells into S phase. Nuclei from these cells synthesized 70-80% less DNA than did nuclei from control cells. Extraction of isolated nuclei with 0.3 M-KCl decreased DNA synthesis by about 60%, which was recovered almost completely in control cell nuclei by reconstitution with the salt extracts of these nuclei. On the other hand, salt extracts of polyamine-depleted nuclei restored only 50% of DNA synthesis in extracted control nuclei. Salt extracts of control cell nuclei contained twice the DNA polymerase alpha activity of polyamine-depleted nuclear extracts. Extracts of cell lysates of both control and polyamine-depleted HeLa cells exhibited similar DNA polymerase alpha activity, suggesting that uptake of the enzyme or its retention by the nuclei of polyamine-depleted cells was decreased. Polyamine-depleted nuclei also showed altered phosphorylation of a 31 kDa protein as compared with control nuclei. Almost normal DNA synthesis, cell proliferation, DNA polymerase alpha activity and nuclear protein phosphorylation were restored in polyamine-depleted cells grown in medium supplemented with 20 microM-spermidine at least 10-12 h before S phase. Cultures in which proliferation was blocked by alpha-difluoromethylornithine did not exhibit synchronous growth after the block was removed. Thus it may be concluded that HeLa cells depleted of polyamines are not inhibited at a single control point in the cell cycle, but are arrested at diverse sites throughout G1 phase.

This content is only available as a PDF.