Neuroblastoma x glioma hybrid NG108-15 cells express a high-affinity IP prostanoid receptor. Saturation binding analysis of this receptor, using [3H]prostaglandin E1 ([3H]PGE1) as ligand, indicated that it was present at some 1.5 pmol/mg of membrane protein and displayed a dissociation constant for this ligand of 30-40 nM. Prolonged exposure of these cells either to PGE1 or to iloprost, which is a stable analogue of prostacyclin, caused a 40-70% decrease in levels of the receptor. The remaining receptors were capable of interacting with the stimulatory G-protein (Gs) of the adenylate cyclase cascade, as saturation analysis of the binding of [3H]PGE1 indicated that they had a similar affinity for the 3H-labelled ligand, and because the specific binding of [3H]PGE1 to these receptors was still sensitive to the presence of poorly hydrolysed analogues of GTP. We have recently demonstrated that prolonged exposure of NG108-15 ells to PGE1 causes a cyclic AMP-independent loss of Gs alpha-subunit (Gs alpha) from these cells [McKenzie & Milligan (1990) J. Biol. Chem. 265, 17084-17093]. Steady-state concentration of the larger 45 kDa form of Gs alpha (which is the predominant form expressed in these cells) was assessed to be 9.6 pmol/mg of membrane protein, and treatment with iloprost decreased levels of this polypeptide to some 3.0 pmol/mg of protein. Time courses of iloprost-mediated down-regulation of the IP prostanoid receptor, loss of Gs alpha protein as assessed by immunoblotting and loss of Gs alpha activity as assessed by the reconstitution of NaF stimulation of adenylate cyclase activity to membranes of S49 cyc- cells by sodium cholate extracts of NG108-15 cells were identical, suggesting that the loss of the IP prostanoid receptor and G-protein occurred in parallel. Each of these effects was half-maximal between 2 and 3 h of exposure to the agonist. Stoichiometry of loss of Gs alpha and IP prostanoid receptor was unchanged by the percentage receptor occupancy, and quantification indicated the loss of some 7-10 mol of Gs alpha/mol of receptor. This is the first report to demonstrate the temporal concurrence of loss of Gs alpha and of a receptor which interacts with this G-protein. Chronic activation of the IP prostanoid receptor on these cells results in the development of a heterologous form of desensitization to agents which function to activate adenylate cyclase [Kelly, Keen, Nobbs & MacDermot (1990) Br. J. Pharmacol. 99, 306-316]. Agonist regulation of Gs alpha levels in these cells may contribute to this process.

This content is only available as a PDF.