Rat liver fatty acid-binding protein (FABP) is able to accommodate a wide range of non-polar anions in addition to long-chain fatty acids. This property means that the liver protein is functionally different from other FABPs from intestine, muscle and adipose tissue that have a more restricted ligand specificity and stoichiometry. The availability of crystal structures for the latter proteins has highlighted the importance of two arginine residues that are involved in the binding of the fatty acid carboxylate. Only one of these arginine residues, arginine-122, is conserved in liver FABP, whereas the other arginine, at position 102, is replaced by a threonine. In order to gain further insight into the nature of ligand interactions with liver FABP these key residues (102 and 122) have been changed by site-directed mutagenesis. The results with an R122Q mutant highlight the critical role of this arginine in determining ligand affinity, while similar but less dramatic effects were observed with the T102Q mutant. The double mutant T102Q/R122Q was expressed but had lost the ability to bind fluorescent ligands. It is concluded that Arg-122 plays a role in accommodating the carboxylate group of at least one fatty acid. It is proposed that physiological ligands with more bulky headgroups, such as lysophospholipids, acyl-CoA and mono-olein, bind with the headgroups in a solvent-exposed location near the portal region of the protein. The portal region is suggested to be more flexible in the mutants (R122Q and to a lesser extent T102Q). The net result is that the ligand specificity of the R122Q mutant changes to that of a protein with enhanced affinity for acyl-CoA, lysophospholipids and mono-olein.

This content is only available as a PDF.