The three human embryonic haemoglobins have been studied using a range of stopped-flow and flash photolysis experiments. The association and dissociation kinetics and equilibrium constants for the tetramer–dimer reactions of the deoxy and oxygenated forms have been investigated and found to be characterized by constants similar to those of the human adult protein. The rates of oxygen dissociation from the embryonic haemoglobins have been measured and appear to be responsible for the high oxygen-binding affinity associated with the embryonic proteins compared with the adult protein. The pH dependence of the oxygen dissociation rate constants also accounts for the rather unusual, previously described, Bohr effects characteristic of the embryonic haemoglobins. A general scheme has been developed coupling both the dimer–tetramer equilibria and ligand-binding steps observed following photolysis of the liganded forms of the human embryonic haemoglobins.

This content is only available as a PDF.