We have previously shown that the leukotriene D4 (LTD4)-induced mobilization of intracellular Ca2+ in epithelial cells is mediated by a G-protein that is distinctly different from the pertussis toxin-sensitive G-protein that regulates the subsequent influx of Ca2+. In the present study, we attempted to gain further knowledge about the mechanisms involved in the LTD4-induced mobilization of intracellular Ca2+ in epithelial cells by investigating the effects of compactin, an inhibitor of the isoprenylation pathway, on this signalling event. In cells preincubated with 10 μM compactin for 48 h, the LTD4-induced mobilization of intracellular Ca2+ was reduced by 75% in comparison with control cells. This reduction was reversed by co-administration of mevalonate (1 mM). The effect of compactin occurred regardless of whether or not Ca2+ was present in the extracellular medium, suggesting that isoprenylation must occur before Ca2+ is released from intracellular stores. In accordance with this, we also found that both the LTD4-induced formation of inositol 1,4,5-trisphosphate and the LTD4-induced phosphorylation of phospholipase Cγ1 (PLCγ1) on tyrosine residues were significantly reduced in compactin-pretreated cells. These results open up the possibility that the activation of PLCγ1 is related to a molecule that is sensitive to impaired activity of the isoprenylation pathway, such as a small monomeric G-protein. This idea was supported by the observation that Clostridium botulinum C3 exoenzyme-induced inhibition of Rho proteins abolished the LTD4-induced intracellular mobilization of Ca2+. A regulatory role of Rho proteins in the LTD4-induced activation of PLCγ1 is unlikely to be indirectly mediated via an effect on the cytoskeleton, since cytochalasin D had no major effect on the LTD4-induced mobilization of Ca2+. Although the mechanism of interaction remains to be elucidated, the present findings indicate an important role of an isoprenylated protein such as Rho in the LTD4-induced Ca2+ signal.

This content is only available as a PDF.