In several cell types, Ca2+ release from intracellular Ca2+ stores by Ins(1,4,5)P3 elicits Ca2+ influx from the extracellular space into the cytoplasm, termed store-operated Ca2+ entry (SOCE). In MDCK cells, the Ins(1,4,5)P3-sensitive Ca2+ store giving rise to SOCE essentially overlaps with the thapsigargin (TG)-sensitive store. Recent evidence suggests that in MDCK cells lysosomes form a Ca2+ pool that is functionally coupled with the Ins(1,4,5)P3-sensitive Ca2+ store: Ca2+ can be selectively released from lysosomes by glycyl-L-phenylalanine naphthylamide, an agent inducing lysosomal swelling with subsequent and reversible permeabilization of the vesicular membranes. This compartment is also depleted by Ins(1,4,5)P3-dependent agonists or TG, indicating that it is part of a larger, Ins(1,4,5)P3-sensitive Ca2+ pool. Here we show that whereas SOCE is triggered by Ca2+ release from the entire Ins(1,4,5)P3-sensitive Ca2+ pool, selective Ca2+ release from lysosomes alone is unable to trigger SOCE. This finding is consistent with measurements of the store-operated cation current, a direct parameter for store-operated Ca2+ and Na+ entry into MDCK cells. Hence it is proposed that the Ins(1,4,5)P3-sensitive Ca2+ pool is composed of different intracellular compartments that do not uniformly stimulate Ca2+ entry into the cell.

This content is only available as a PDF.