The relative mRNA levels corresponding to the different sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase isoforms (SERCA1a, SERCA1b, SERCA2a, SERCA2b and SERCA3) were measured by reverse transcriptase–PCR in rat soleus muscles regenerating after notexin-induced necrosis. The succession of appearance of the different types of SERCA mRNA species in regenerating muscle largely recapitulates those observed during normal ontogenesis. The mRNA levels of the muscle-specific isoforms SERCA1a and SERCA2a became very low on the first and third days after injection of the snake venom. It was only on the fifth day of regeneration that the mRNA of the neonatal variant of the fast-twitch skeletal SERCA1b isoform began to rise, well before the other SERCA transcripts. At 7 and 10 days, i.e. at a time when the new myofibres normally become re-innervated, the mRNA level of SERCA1a and SERCA2a increased markedly, but the fast-twitch skeletal SERCA1a isoform was still the most prominent. On day 21, in the advanced stage of regeneration, a switch in the relative expression levels of SERCA1a and SERCA2a mRNA was observed and the ratio of both isoforms became similar to that found in the normal soleus muscles. This was followed by a decline in the level of all SERCA mRNA species, so that on day 28 the levels of the sarcoplasmic/endoplasmatic-reticulum Ca2+-pump RNAs was again lower but their ratio remained similar to that of the untreated control soleus.

This content is only available as a PDF.