Several structurally related plant lipids were isolated and their effect was assessed on the enzyme activity of group I (pancreatic and Naja mocambique venom) and group II (Crotalus atrox venom) phospholipase A2 (PLA2) enzymes, with labelled Escherichia coli as an enzyme substrate. The neutral monogalactosyldiacylglycerol (MGDG) and negatively charged diacylglyceryl α-D-glucuronide (DGGA) did not influence the enzyme activity of either group. Digalactosyldiacylglycerol (DGDG), another uncharged glycolipid, inhibited PLA2 activity in a dose-dependent manner to 60–70% of the control. Sulphoquinovosyldiacylglycerol (SQDG), which is also anionic, activated both groups of PLA2 enzyme. A similar activation was observed with the zwitterionic diacylglyceryl-O-(N,N,N-trimethylhomoserine) (DGTS) and diacylglyceryl-O-(hydroxymethyl)(N,N,N-trimethyl)-β-alanine (DGTA). DGDG, SQDG and DGTS are dispersed homogeneously with low critical micelle concentrations (CMCs). The hydrodynamic radius of neutral DGDG is an order of magnitude larger than the charged lipids SQDG and DGTS. The inhibition of pig pancreatic PLA2 by DGDG was dependent on substrate concentration. The intrinsic fluorescence spectra of the enzyme was not changed in the presence of native or hydrogenated DGDG. Thus the inhibition is most probably due to a non-specific interaction of plant lipids with the substrate. Different lengths and saturations of the fatty acyl chains of DGDG did not alter the inhibition of PLA2, whereas deacylation abrogated the inhibitory effect. Both SQDG and DGTS activated pig pancreatic PLA2 in a dose-dependent manner. Saturation of the double bonds of these lipids decreased the activating effect. The fluorescence of pig pancreatic PLA2 incubated with SQDG and DGTS was enhanced by 2-fold and 3-fold respectively, suggesting the formation of a complex between enzyme and lipids. In conclusion, the effect of different plant lipids on PLA2 activity depends on different structural elements of the polar head group and their charge as well as the degree of unsaturation of the fatty acyl chains.

This content is only available as a PDF.