Ammodytin L, purified from the venom of Vipera ammodytes, triggers a rapid and dramatic lytic process in myotubes in vitro, as well as in differentiated muscle cells in vivo, through a mechanism that is not well understood. Despite its great sequence similarity to phospholipase A2, it is devoid of any enzyme activity. Data on artificial membranes demonstrating a direct interaction between this toxin and the hydrophobic core of the lipid bilayer suggest that the toxin also acts on the lipid microenvironment in cell membranes. Recent experiments on living cells do not confirm this hypothesis, and a more intricate mechanism is proposed. In vitro, ammodytin L has necrotic effects only in well-differentiated myogenic cells, whereas other cell types such as platelets, red blood cells and lymphocytes show neither morphological nor functional alterations. In this work we demonstrate that rat 208F fibroblasts in culture after ammodytin L challenge increase [3H]thymidine incorporation, indicating that this toxin has a myogenic effect. Moreover, ammodytin L increases intracellular Ca2+ by acting on intracellular stores probably by activating a phosphatidylinositol-specific phospholipase C. Preincubation of the cells with ammodytin L did not prevent the massive Ca2+ release evoked by bradykinin, a phenomenon observed when fibroblasts were incubated with both thapsigargin and ionomycin. Heparin, an agent that inhibits the necrotic effect of the myotoxin in myotubes, also reduces the effect of ammodytin L on DNA synthesis. Heparin inhibits only the late sustained increase in intracellular Ca2+ induced by the toxin.

This content is only available as a PDF.