The role of cytosolic phospholipase A2 (cPLA2) and its mode of activation by opsonized zymosan (OZ) was studied in human neutrophils in comparison with activation by PMA. The activation of cPLA2 by 1 mg/ml OZ or 50 ng/ml PMA is evidenced by its translocation to the membrane fractions on stimulation. This translocation is consistent with dithiothreitol (DTT)-resistant phospholipase A2 (PLA2) activity detected in the membranes of activated cells. Neutrophils stimulated by either OZ or PMA exhibited an immediate stimulation of extracellular-signal-regulated kinases (ERKs). The inhibition of ERKs, DTT-resistant PLA2 and NADPH oxidase activities by the MAP kinase kinase inhibitor PD-98059 indicates that ERKs mediate the activation of cPLA2 and NADPH oxidase stimulated by either OZ or PMA. The protein kinase C (PKC) inhibitor GF-109203X inhibited epidermal growth factor receptor peptide kinase activity, the release of [3H]arachidonic acid, DTT-resistant PLA2 activity and superoxide generation induced by PMA, but did not inhibit any of these activities induced by OZ. PKC activity was similarly inhibited by GF-109203X in membrane fractions separated from neutrophils stimulated by either PMA or OZ. In the presence of the tyrosine kinase inhibitor genistein, ERKs, PLA2 and NADPH oxidase activities were inhibited in cells stimulated by OZ, whereas they were hardly affected in cells stimulated by PMA. The results suggest that the activation of cPLA2 by PMA or OZ is mediated by ERKs. Whereas PMA stimulates ERKs activity through a PKC-dependent pathway, signal transduction stimulated by OZ involves tyrosine kinase activity leading to activation of ERKs via a PKC-independent pathway.

This content is only available as a PDF.