1. Rat soleus strips were incubated with 5 mM glucose, after which tissue metabolites were measured. Alternatively, muscle strips were incubated with 5 mM glucose and 0.2 mM palmitate, and the formation of 14CO2 from exogenous palmitate or from fatty acids released from prelabelled glycerolipids was measured.

2. Etomoxir, which inhibits the mitochondrial overt form of carnitine palmitoyltransferase (CPT1), increased the tissue content of long-chain fatty acyl-CoA esters and decreased the ratio of fatty acylcarnitine to fatty acyl-CoA, suggesting that such changes could be a diagnostic for the inhibition of CPT1.

3. Over a range of incubation conditions there was a positive correlation between the tissue contents of malonyl-CoA and long-chain fatty acyl-CoA esters. Under conditions in which these two metabolites increased in content (i.e. with insulin or with 3 mM dichloroacetate) there was a corresponding decrease in the ratio of fatty acylcarnitine to fatty acyl-CoA and a decrease in β-oxidation. Isoprenaline or palmitate (0.5 mM) opposed the effect of insulin, decreasing the contents of malonyl-CoA and long-chain fatty acyl-CoA, increasing the ratio of fatty acylcarnitine to fatty acyl-CoA and increasing β-oxidation. These findings are consistent with the notion that all of these agents can cause the acute regulation of CPT1 in Type I skeletal muscle.

4. The addition of 5-amino-4-imidazolecarboxamide ribonucleoside (AICAriboside) to cause activation of the AMP-activated protein kinase decreased the tissue content of malonyl-CoA. AICAriboside also had an antilipolytic effect in the muscle strips.

5. Measurements were made of the activities of ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthase and malonyl-CoA decarboxylase in soleus muscle and in representative Type IIa and Type IIb muscles. A cytosolic activity of malonyl-CoA decarboxylase would seem to offer a feasible route for the disposal of malonyl-CoA in skeletal muscle.

This content is only available as a PDF.