Blood coagulation requires the conversion of zymogens to active enzymes. These reactions are facilitated by Ca2+-dependent protein binding to membrane surfaces containing anionic phospholipids. Here it is shown that only in the presence of both Ca2+ and phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine can a prothrombin dimer be chemically cross-linked. A cross-linker containing evenly spaced reactive groups was prepared by activating the carboxy groups of a ten-residue glutamic acid peptide and allowed to react with physiological concentrations of prothrombin. When Ca2+ and anionic phospholipids were both present during exposure to the cross-linker, it was found that more than 50% of the prothrombin was trapped as a chemically defined dimer with reaction times of the order of 1 min. The dimer yield remained high even when reactions were performed at high phospholipid-to-protein ratios at protein concentrations an order of magnitude less than physiological. Amino acid sequencing of a CNBr peptide produced from the purified dimer localized the cross-link to residues Lys341 and Lys427 of prothrombin. The specificity and high yield under mild conditions of the cross-linking suggest that dimeric membrane bound prothrombin might be a physiologically relevant substrate for the formation of thrombin. Prothrombinase converts this modified protein to an enzyme that catalyses the hydrolysis of a thrombin chromogenic substrate as efficiently as thrombin and is inhibited by a thrombin active-site directed inhibitor, but is a thrombin dimer. The thrombin dimer has impaired activity compared with thrombin with respect to physiological functions requiring binding to exosite I. A model based on the known structure of thrombin is presented that can account for the prothrombin dimer and the properties of the dimeric thrombin formed from it.

This content is only available as a PDF.