Redox modulation is involved in the regulation of the intracellular free calcium concentration ([Ca2+]i) in several cell types. In thyroid cells, including thyroid FRTL-5 cells, changes in [Ca2+]i regulate important functions. In the present study we investigated the effects of the oxidizing compounds thimerosal and t-butyl hydroperoxide on [Ca2+]i in thyroid FRTL-5 cells. Thimerosal mobilized sequestered calcium, and evoked modest store-dependent calcium entry. Both compounds potently attenuated the increase in [Ca2+]i when store-operated calcium entry was evoked with thapsigargin. The entry of barium was not attenuated. Experiments performed with high extracellular pH, in sodium-free buffer and in the presence of vanadate suggested that thimerosal decreased [Ca2+]i by activating a calcium extrusion mechanism, probably a plasma membrane Ca2+-ATPase. All the observed effects were abrogated by the reducing agent β-mercaptoethanol. The mechanism of action was apparently mediated via activation of protein kinase C, as thimerosal potently stimulated binding of [3H]phorbol 12,13-dibutyrate, and was without effect on store-operated calcium entry in cells treated with staurosporine or in cells with down-regulated protein kinase C. Thimerosal did not depolarize the membrane potential, as evaluated using patch-clamp in the whole-cell mode. In immunoprecipitates obtained with an antibody against plasma membrane Ca2+-ATPase, we observed several phosphorylated bands in cells stimulated with thimerosal. In conclusion, we have shown that thimerosal attenuates an increase in [Ca2+]i, probably by activating a plasma membrane Ca2+-ATPase.

This content is only available as a PDF.