Different cytotoxic drugs induce cell death by activating the apoptotic programme; a family of cysteinyl aspartate proteases named caspases has been shown to be involved in the initiation as well as the execution of this kind of cell death. In the present study, cleavage of D4-GDI (Rho-GDI 2), an abundant haemopoietic-cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, was demonstrated after treatment of BJAB Burkitt-like lymphoma cells with taxol or epirubicin. The cleavage of D4-GDI occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. By using high-resolution two-dimensional gel electrophoresis it was shown that this cleavage is specific: whereas the level of the homologous protein Rho-GDI 1 was not significantly altered during drug-induced apoptosis and in cytochrome c/dATP-activated cellular extracts, D4-GDI disappeared owing to proteolytic cleavage. Inhibitor experiments with Z-DEVD-fmk (in which Z stands for benzyloxycarbonyl and fmk for fluoromethyl ketone) and microsequencing of the D4-GDI fragment revealed that this occurs at the caspase-3 cleavage site. Our results strongly suggest the differential regulation of the homologous GDP dissociation inhibitors Rho-GDI 1 and D4-GDI during drug-induced apoptosis by proteolysis mediated by caspase-3 but not by caspase-1. Owing to their crucial role as modulators of Rho GTPases, this might in turn have a significant impact on the mechanisms that induce the cytoskeletal and morphological changes in apoptotic cells.

This content is only available as a PDF.