The role of active-site residues in the dealkylation reaction in the PSCS diastereomer of 2-(3,3-dimethylbutyl)methylphosphonofluoridate (soman)-inhibited Torpedo californicaacetylcholinesterase (AChE) was investigated by full-scale molecular dynamics simulations using CHARMM: > 400ps equilibration was followed by 150–200ps production runs with the fully solvated tetracoordinate phosphonate adduct of the wild-type, Trp84Ala and Gly199Gln mutants of AChE. Parallel simulations were carried out with the tetrahedral intermediate formed between serine-200 Oγ of AChE and acetylcholine. We found that the NεH in histidine H+-440 is positioned to protonate the oxygen in choline and thus promote its departure. In contrast, NεH in histidine H+-440 is not aligned for a favourable proton transfer to the pinacolyl O to promote dealkylation, but electrostatic stabilization by histidine H+-440 of the developing anion on the phosphonate monoester occurs. Destabilizing interactions between residues and the alkyl fragment of the inhibitor enforce methyl migration from Cβ to Cα concerted with C—O bond breaking in soman-inhibited AChE. Tryptophan-84, phenyalanine-331 and glutamic acid-199 are within 3.7–3.9 Å (1 Å=10-10 m) from a methyl group in Cβ, 4.5–5.1 Å from Cβ and 4.8–5.8 Å from Cα, and can better stabilize the developing carbenium ion on Cβ than on Cα. The Trp84Ala mutation eliminates interactions between the incipient carbenium ion and the indole ring, but also reduces its interactions with phenylalanine-331 and aspartic acid-72. Tyrosine-130 promotes dealkylation by interacting with the indole ring of tryptophan-84. Glutamic acid-443 can influence the orientation of active-site residues through tyrosine-421, tyrosine-442 and histidine-440 in soman-inhibited AChE, and thus facilitate dealkylation.

This content is only available as a PDF.

Author notes


Present address: Georgetown University Medical Center, Institute of Cognitive and Computational Sciences, The Research Building, 3970 Reservoir Road, Washington, DC 20007, U.S.A.


Present address: Central Research Institute of Chemistry, Hungarian Academy of Sciences (HAS), P.O. Box 17, Budapest, H-1525 Hungary.