The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.

This content is only available as a PDF.