Cystathionine β-synthase (CBS) catalyses the condensation of serine and homocysteine to form cystathionine, an intermediate step in the synthesis of cysteine. Human CBS encodes five distinct 5′ non-coding exons, the most frequent termed CBS −1a and CBS −1b, each transcribed from its own unique GC-rich TATA-less promoter. The minimal transcriptional region (−3792 to −3667) of the CBS −1b promoter was defined by 5′- and 3′-deletions, and transient transfections of reporter gene constructs in HepG2 cells, characterized by CBS transcription exclusively from the −1b promoter. Included in this 125bp region are 3 GC-boxes (termed GC-a, GC-b and GC-c), an inverted CAAT-box and an E-box. By gel-shift and supershift assays, binding of specificity protein (Sp)1 and Sp3 to the GC-box elements, upstream stimulatory factor 1 (USF-1) to the E-box, and both nuclear factor (NF)-Y and an NF-1-like factor to the CAAT box could be demonstrated. By transient trans fections and reporter gene assays in HepG2 and Drosophila SL2 cells, a functional interplay was indicated between NF-Y binding to the CAAT-box, or between USF-1 binding to the E-box, and Sp1/Sp3 binding to the GC-box elements. In SL2 cells, NF-Y and Sp1/Sp3 were synergistic. Furthermore, both Sp1 and the long Sp3 isoform transactivated the CBS −1b minimal promoter; however, the short Sp3 isoforms were potent repressors. These results may explain the cell- or tissue-specific regulation of CBS transcription, and clarify the bases for alterations in CBS gene expression in human disease and Down's syndrome.

Abbreviations used: CBS, cystathionine β-synthase; UTR, untranslated region; AML, acute myeloid leukaemia; DS, Down's syndrome; Sp, specificity protein; NF, nuclear factor; USF-1, upstream stimulatory factor 1; RT, reverse transcription; Ara-C, cytosine arabinoside; RACE, rapid amplification of cDNA ends.

This content is only available as a PDF.