We have previously shown that the protein kinase inhibitor β (PKIβ) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011–20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

Abbreviations used: PKA, cAMP-dependent protein kinase; PKG, cGMP-dependent protein kinase; PKI, protein kinase inhibitor.

This content is only available as a PDF.

Author notes

1

Present address: Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, U.S.A.