Atrial natriuretic peptide (ANP) is a cardiac peptide, the transcription of which is up-regulated in the ischaemic ventricle. However, the molecular mechanism of ANP induction is unclear. This study demonstrated that ANP mRNA expression in rat ventricular myocardium is induced in an early phase of ischaemia, preceded by hypoxia-inducible factor-1 (HIF-1) α expression. The ANP gene was also induced by hypoxia or HIF-1 inducers such as CoCl2 and desferrioxamine in H9c2 and neonatal cardiomyocytes. The 2307bp 5′-flanking region of the rat ANP gene was cloned and fused to the luciferase gene. Evidence of the promoter activity was only apparent in the myocytes and was induced by hypoxia and HIF-1 inducers. The overexpression of HIF-1α markedly enhanced ANP promoter activity, and a dominant-negative isoform completely suppressed it. We demonstrated that the promoter regions are essential for hypoxic ANP induction. One promoter region, containing the HIF-1-binding sequence, is regulated directly by HIF-1. The other region is also activated by HIF-1 despite having no HIF-1-binding sequence. These results suggest that HIF-1 enhances the transactivation of the ANP gene in hypoxic myocytes, implying that stimulation of the ANP promoter by HIF-1 may in fact be responsible for the induction of the ANP gene in ischaemic ventricular myocardium.

Abbreviations used: ANP, atrial natriuretic peptide; EMSA, electrophoretic mobility-shift assay; EPO, erythropoietin; HIF-1, hypoxia-inducible factor-1; HRE, hypoxia-response element; PHRE, putative HRE; hPHRE, human PHRE; RT-PCR, reverse transcriptase PCR; VEGF, vascular endothelial growth factor; VEGF-E, VEGF enhancer.

This content is only available as a PDF.