The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism, and if these functions are disrupted, developmental defects or disease may result. Furthermore, animal models have shown a highly specific, non-redundant role for individual SR proteins in the regulation of developmental processes. Here, we will review the current literature to demonstrate how SR proteins are emerging as one of the master regulators of gene expression.

INTRODUCTION

Pre-mRNA splicing was discovered in the late 1970s when it was demonstrated that eukaryotic genes contained intervening sequences, or introns, that were not present in the mature mRNA [1,2]. Subsequent studies showed that introns are removed by a macromolecular complex, termed the spliceosome, which consists of five snRNPs [small nuclear RNPs (ribonucleoprotein particles)], U1, U2, U4, U5 and U6, and a large number of protein components (reviewed in [3,4]). Spliceosomal assembly is initiated by the recognition of the 5′ and 3′ ss (splice sites) by the U1 snRNP and the heterodimeric U2AF (U2 snRNP auxiliary factor) respectively, forming the E complex. Recruitment of the U2 snRNP to the BP (branch-point), in an ATP-dependent manner, results in the formation of the A complex. Subsequent recruitment of the U4/U6·U5 tri-snRNP forms the B complex, which is followed by a series of structural rearrangements leading to the formation of the catalytically active spliceosomal C complex (reviewed in [5]). The spliceosome is a dynamic structure and more than 300 proteins have been identified in active splicing complexes [68] (reviewed in [9]).

The aim of this article is to review the contribution of SR protein family members to pre-mRNA splicing, as well as reviewing more recent studies expanding their role in post-splicing activities. Finally, we will discuss how misregulation of SR protein functions can lead to human disease.

THE SR PROTEIN FAMILY

The SR proteins were first discovered as splicing factors in the early 1990s (reviewed in [1012]). A protein domain rich in arginine and serine dipeptides, termed the RS domain, was originally observed in three Drosophila splicing regulators, SWAP (suppressor-of-white-apricot) [13], Tra (transformer) [14] and Tra-2 (transformer-2) [15]. Subsequent identification of SF2/ASF (splicing factor 2/alternative splicing factor) [16,17] and SC35 (spliceosomal component 35) [18] revealed that these proteins contained an RS domain, which is also present in the U1 snRNP-associated protein, U1-70K [19,20].

SF2/ASF was the first SR protein to be identified as an activity required to complement an otherwise splicing-deficient HeLa (human cervical carcinoma cell) S100 extract [21] and was also purified from HEK (human embryonic kidney)-293 cells as a factor which could alter 5′ ss selection of an SV40 (simian virus 40) early pre-mRNA [22]. The term ‘SR protein’ was coined following identification of additional RS domain-containing proteins that were recognized by a monoclonal antibody, mAb 104, which binds to active sites of RNA polymerase II transcription [23]. These novel proteins, which were active in splicing complementation, included the SR proteins SRp20, SRp40, SRp55 and SRp75, named after their apparent molecular mass on an SDS/PAGE gel, and are conserved across vertebrates and invertebrates [24]. They have a modular structure containing one or two copies of an RRM (RNA recognition motif) at the N-terminus that provides RNA-binding specificity and a C-terminal RS domain that acts to promote protein–protein interactions that facilitate recruitment of the spliceosome [25,26]. The RS domain can also contact the pre-mRNA directly via the BP and the 5′ ss, suggesting an alternative way to promote spliceosome assembly [27,28] (reviewed in [29]). Furthermore, the RS domain acts as an NLS (nuclear localization signal), affecting the subcellular localization of SR proteins by mediating the interaction with the SR protein nuclear import receptor, transportin-SR [3032].

The prototypical SR protein, SF2/ASF, functions in constitutive splicing and also modulates alternative splicing [22,33]. Further studies demonstrated that other SR protein family members could also affect alternative splicing in vitro [34,35]. Thus, the criteria used to define ‘classical’ SR protein family members are (i) structural similarity, (ii) dual function in constitutive and alternative splicing, (iii) the presence of a phosphoepitope recognised by mAb104; and (iv) their purification using magnesium chloride (Table 1).

Table 1
‘Classical’ SR proteins
Protein name Gene name Key domains Splicing role UniProt 
SF2/ASF SFRS1 RRM×2, RS Constitutive and alternative splicing activator Q07955 
SC35 SFRS2 RRM, RS Constitutive and alternative splicing activator Q01130 
SRp20 SFRS3 RRM, RS Constitutive and alternative splicing activator P84103 
SRp75 SFRS4 RRM×2, RS Constitutive and alternative splicing activator Q08170 
SRp40 SFRS5 RRM×2, RS Constitutive and alternative splicing activator Q13243 
SRp55 SFRS6 RRM×2, RS Constitutive and alternative splicing activator Q13247 
9G8 SFRS7 RRM, RS, CCHC-type zinc finger Constitutive and alternative splicing activator Q16629 
Protein name Gene name Key domains Splicing role UniProt 
SF2/ASF SFRS1 RRM×2, RS Constitutive and alternative splicing activator Q07955 
SC35 SFRS2 RRM, RS Constitutive and alternative splicing activator Q01130 
SRp20 SFRS3 RRM, RS Constitutive and alternative splicing activator P84103 
SRp75 SFRS4 RRM×2, RS Constitutive and alternative splicing activator Q08170 
SRp40 SFRS5 RRM×2, RS Constitutive and alternative splicing activator Q13243 
SRp55 SFRS6 RRM×2, RS Constitutive and alternative splicing activator Q13247 
9G8 SFRS7 RRM, RS, CCHC-type zinc finger Constitutive and alternative splicing activator Q16629 

A genome-wide survey in metazoans identified a large number of RS domain-containing proteins with a role not only in splicing but also in other cellular processes such as chromatin remodelling, transcription and cell cycle progression [36]. These related proteins contain an RS domain but may lack a defined RRM, however a subset can bind RNA through other domains such as the PWI motif found in the splicing activator SRm160 [37,38] (Tables 2–4). These factors are collectively known as SR-like or SR-related proteins and include both subunits of the U2AF heterodimer, U1-70K and the splicing coactivators SRm 160/300, among others [39]. It was recently proposed that SR proteins should be redefined based on their common structural features and their role in pre-mRNA splicing [40]. Based on this, a ‘bona fide’ SR protein has to contain at least one RRM and an RS domain (irrespective of their positions within the protein) and to function in constitutive or alternative splicing, as assayed by either complementation of splicing-deficient S100 HeLa cytoplasmic extracts or in an alternative splicing assay respectively. The human homologues of the Drosophila splicing regulators Tra2α [41] and Tra2β [42] contain an RRM flanked by two RS domains, which is not the domain structure found in classical SR proteins (Figure 1). Since both proteins function as sequence-specific splicing activators [43], they could be classified as SR proteins (Table 2). Other proteins may contain an RS domain but also have other domains required for their enzymatic activities, as is the case for the RNA helicases HRH1 and hPRP16, that contain a DEAH box domain [44,45] (Table 4).

Schematic diagram of SR and SR-related proteins

Figure 1
Schematic diagram of SR and SR-related proteins

The domain structures are depicted. DEAH Box, motif characteristic of RNA helicases; RS: arginine/serine-rich domain; PWI: an alternative RNA binding motif; Zn, zinc finger motif. With the exception of SRm160 and hPRP5, all proteins are drawn to scale.

Figure 1
Schematic diagram of SR and SR-related proteins

The domain structures are depicted. DEAH Box, motif characteristic of RNA helicases; RS: arginine/serine-rich domain; PWI: an alternative RNA binding motif; Zn, zinc finger motif. With the exception of SRm160 and hPRP5, all proteins are drawn to scale.

Table 2
Additional SR proteins
Protein name Gene name Key domains Splicing role UniProt 
p54 SFRS11 RRM, RS Alternative splicing repressor Q05519 
SRp30c SFRS9 RRM×2, RS Constitutive and alternative splicing regulator Q13242 
SRp38, TASR FUSIP1 RRM, RS General splicing repressor O75494 
hTra2α TRA2A RRM, RS×2 Splicing activator Q13595 
hTra2β SFRS10 RRM, RS×2 Splicing activator P62995 
RNPS1 RNPS1 RRM, RS Constitutive and alternative splicing regulator Q15287 
SRrp35 SRRP35 RRM, RS Negative regulator of alternative splicing Q8WXF0 
SRrp86, SRrp508 SFRS12 RRM, RS Positive and negative regulator of alternative splicing Q8WXA9 
U2AF35 U2AF1 RRM, RS, C3H1-type zinc finger×2 Constitutive splicing factor Q01081 
U2AF65 U2AF2 RRM×3, RS Constitutive splicing factor P26368 
U1-70K SNRP70 RRM, RS Constitutive splicing factor P08621 
XE7 SFRS17A RRM, RS Alternative splicing regulator Q02040 
SRp46 SFRS2B RRM, RS Constitutive and alternative splicing regulator Q9BRL6 
Protein name Gene name Key domains Splicing role UniProt 
p54 SFRS11 RRM, RS Alternative splicing repressor Q05519 
SRp30c SFRS9 RRM×2, RS Constitutive and alternative splicing regulator Q13242 
SRp38, TASR FUSIP1 RRM, RS General splicing repressor O75494 
hTra2α TRA2A RRM, RS×2 Splicing activator Q13595 
hTra2β SFRS10 RRM, RS×2 Splicing activator P62995 
RNPS1 RNPS1 RRM, RS Constitutive and alternative splicing regulator Q15287 
SRrp35 SRRP35 RRM, RS Negative regulator of alternative splicing Q8WXF0 
SRrp86, SRrp508 SFRS12 RRM, RS Positive and negative regulator of alternative splicing Q8WXA9 
U2AF35 U2AF1 RRM, RS, C3H1-type zinc finger×2 Constitutive splicing factor Q01081 
U2AF65 U2AF2 RRM×3, RS Constitutive splicing factor P26368 
U1-70K SNRP70 RRM, RS Constitutive splicing factor P08621 
XE7 SFRS17A RRM, RS Alternative splicing regulator Q02040 
SRp46 SFRS2B RRM, RS Constitutive and alternative splicing regulator Q9BRL6 
Table 3
RNA-binding SR-related factors
Protein name Gene name Key domains Splicing role UniProt 
Urp ZRSR2 RRM, RS Splicing factor Q15696 
HCC1/CAPER RBM39 RRM, RS Alternative splicing regulator Q14498 
hSWAP SFRS16 RS Alternative splicing regulator Q8N2M8 
Pinin PNN RS Alternative splicing regulator Q9H307 
SRrp129 SFRS2IP RS Splicing factor Q99590 
U4/U6·U5 tri-snRNP-associated 27 kDa protein RY-1 RS Unknown Q8WVK2 
LUC7B1 LUC7L RS, C2H2-type zinc finger Unknown Q9NQ29 
Acinus ACIN1 RRM, RS, SAP Unknown Q9UKV3 
SR-A1 SFRS19/SCAF1 RS Unknown Q9H7N4 
ZNF265 ZRANB2 RS, RANBP2-type zinc finger×2 Alternative splicing regulator O95218 
SRm160 SRRM1 RS, PWI Constitutive and alternative splicing co-activator Q8IYB3 
SRm300 SRRM2 RS Constitutive and alternative splicing co-activator Q9UQ35 
RBM5 RBM5 RRM×2, RS, RANBP2- and C2H2-type zinc fingers Unknown P52756 
U2-associated protein SR140 SR140 RRM, RS Unknown O15042 
RBM23 RBM23 RRM×2, RS Unknown Q86U06 
SFRS15 SFRS15 RRM, RS Unknown O95104 
Protein name Gene name Key domains Splicing role UniProt 
Urp ZRSR2 RRM, RS Splicing factor Q15696 
HCC1/CAPER RBM39 RRM, RS Alternative splicing regulator Q14498 
hSWAP SFRS16 RS Alternative splicing regulator Q8N2M8 
Pinin PNN RS Alternative splicing regulator Q9H307 
SRrp129 SFRS2IP RS Splicing factor Q99590 
U4/U6·U5 tri-snRNP-associated 27 kDa protein RY-1 RS Unknown Q8WVK2 
LUC7B1 LUC7L RS, C2H2-type zinc finger Unknown Q9NQ29 
Acinus ACIN1 RRM, RS, SAP Unknown Q9UKV3 
SR-A1 SFRS19/SCAF1 RS Unknown Q9H7N4 
ZNF265 ZRANB2 RS, RANBP2-type zinc finger×2 Alternative splicing regulator O95218 
SRm160 SRRM1 RS, PWI Constitutive and alternative splicing co-activator Q8IYB3 
SRm300 SRRM2 RS Constitutive and alternative splicing co-activator Q9UQ35 
RBM5 RBM5 RRM×2, RS, RANBP2- and C2H2-type zinc fingers Unknown P52756 
U2-associated protein SR140 SR140 RRM, RS Unknown O15042 
RBM23 RBM23 RRM×2, RS Unknown Q86U06 
SFRS15 SFRS15 RRM, RS Unknown O95104 
Table 4
Other RS-domain containing proteins
Protein name Gene name Key domains Splicing role UniProt 
SRrp53 RSRC1 RS, coiled-coil domain Unknown Q96IZ7 
hPRP5 DDX46 RS, DEAH box Spliceosomal rearrangement Q7L014 
hPRP16 DHX38 RS, DEAH box Splicing factor Q92620 
Prp22/HRH1 DHX8 RS, DEAH box Spliceosomal rearrangement Q14562 
U5-100k/hPRP28 DDX23 RS, DEAD box Spliceosomal rearrangement Q9BUQ8 
ClkSty-1 CLK1 RS, kinase domain SR protein kinase P49759 
ClkSty-2 CLK2 RS, kinase domain SR protein kinase P49760 
ClkSty-3 CLK3 RS, kinase domain SR protein kinase P49761 
Prp4k PRPF4B RS, kinase domain SR protein kinase Q13523 
CrkRS CRKRS RS, kinase domain SR protein kinase Q9NYV4 
CDC2L5 CDC2L5 RS, kinase domain Alternative splicing regulator Q14004 
Cyclin-L1 CCNL1 RS, cyclin-like domain×2 Alternative splicing regulator Q9UK58 
Cyclin-L2 CCNL2 RS, cyclin-like domain×2 Alternative splicing regulator Q96S94 
SR-cyp PPIG RS, PPIase cyclophilin-type domain Regulates localisation of SR proteins Q13427 
CIR CIR RS Alternative splicing regulator Q86X95 
SRrp130 SFRS18 RS×2 Unknown Q8TF01 
Protein name Gene name Key domains Splicing role UniProt 
SRrp53 RSRC1 RS, coiled-coil domain Unknown Q96IZ7 
hPRP5 DDX46 RS, DEAH box Spliceosomal rearrangement Q7L014 
hPRP16 DHX38 RS, DEAH box Splicing factor Q92620 
Prp22/HRH1 DHX8 RS, DEAH box Spliceosomal rearrangement Q14562 
U5-100k/hPRP28 DDX23 RS, DEAD box Spliceosomal rearrangement Q9BUQ8 
ClkSty-1 CLK1 RS, kinase domain SR protein kinase P49759 
ClkSty-2 CLK2 RS, kinase domain SR protein kinase P49760 
ClkSty-3 CLK3 RS, kinase domain SR protein kinase P49761 
Prp4k PRPF4B RS, kinase domain SR protein kinase Q13523 
CrkRS CRKRS RS, kinase domain SR protein kinase Q9NYV4 
CDC2L5 CDC2L5 RS, kinase domain Alternative splicing regulator Q14004 
Cyclin-L1 CCNL1 RS, cyclin-like domain×2 Alternative splicing regulator Q9UK58 
Cyclin-L2 CCNL2 RS, cyclin-like domain×2 Alternative splicing regulator Q96S94 
SR-cyp PPIG RS, PPIase cyclophilin-type domain Regulates localisation of SR proteins Q13427 
CIR CIR RS Alternative splicing regulator Q86X95 
SRrp130 SFRS18 RS×2 Unknown Q8TF01 

SR PROTEINS AND TRANSCRIPTION

SR proteins are concentrated in nuclear speckles and are recruited from these sites to nascent sites of RNAP II (RNA polymerase II) transcription [46]. It is well documented that RNA splicing occurs co-transcriptionally [47,48]. Interactions between SR-related proteins and the CTD (C-terminal domain) of RNAP II have been reported [49], and members of the SR protein family were identified among the hundreds of proteins present in the RNAP II complex [50]. It was recently reported that SC35 promotes RNAP II elongation in a subset of genes, confirming the existence of coupling between transcription and splicing, and perhaps surprisingly, showing that this coupling can be bidirectional [51] (reviewed in [52]). In this study [51] it was demonstrated that SC35 interacts not only with the CTD but also with CDK9 (cyclin-dependent kinase 9), which is the kinase component of the transcriptional elongation factor P-TEFb (positive transcription elongation factor b), resulting in phosphorylation of Ser2 in the CTD and leading to transcriptional elongation. This activity of SR proteins in transcriptional elongation may be functionally related to their reported effect in the maintenance of genome stability. It has been shown that depletion of SF2/ASF, SC35 and the SR-related protein RNSP1 results in the formation of R-loops (RNA:DNA hybrid structures) leading to a hypermutation phenotype [5355].

The co-transcriptional nature of pre-mRNA splicing underlies a role for the transcriptional machinery in alternative splicing regulation [56]. A kinetic coupling model proposed that changes in the rate of transcriptional elongation affect the timing in which splice sites are presented to the splicing machinery, leading to differential splice site selection [57]. Furthermore, differential recruitment of splicing factors to the CTD of RNAP II may also influence this process [58] (reviewed in [59]).

ROLES OF CLASSICAL SR PROTEINS IN CONSTITUTIVE AND ALTERNATIVE SPLICING

Splice site consensus sequences are generally not sufficient to direct assembly of a functional spliceosome, and auxiliary elements known as ESEs and ISEs (exonic and intronic splicing enhancers respectively) and ESSs and ISSs (exonic and intronic silencers respectively) are involved in both constitutive and, to perhaps a greater extent, alternative splicing. Binding of SR proteins to ESEs acts as a barrier that prevents exon skipping, thus ensuring the correct 5′ to 3′ linear order of exons in spliced mRNA [60]. Two main models have been proposed to explain the mechanism by which SR proteins regulate exon inclusion. The ‘recruitment model’ focuses on the ability of ESE-bound SR proteins to recruit and stabilize interactions between the U1 snRNP at the 5′ ss and U2AF65 at the 3′ ss [61], in a process known as exon definition [62] (Figure 2A). The hnRNP (heterogeneous nuclear RNP) family comprises a structurally diverse group of RNA-binding proteins with roles in many aspects of RNA biogenesis, including pre-mRNA splicing (reviewed in [63]). In the ‘inhibitor model’, ESE-bound SR proteins may act by antagonizing the negative activity of hnRNP proteins recognizing ESSs [64] (Figure 2B). The SR proteins may also form a network of protein–protein interactions across introns to juxtapose the 5′ and 3′ ss early in spliceosomal assembly, as shown by the reported interactions of SF2/ASF and SC35 with U1-70K at the 5′ ss and with U2AF35 at the 3′ ss in an RS domain-dependent manner [25] (Figure 2C). Additionally, the enhancer-bound RS domain of the SR protein SF2/ASF has been shown to interact directly with RNA at the BP to promote pre-spliceosomal assembly [27,28]. SR proteins may also facilitate the recruitment of the U4/U6·U5 tri-snRNP to the pre-spliceosome [65] via RS domain-mediated interactions with the SR-related proteins SRrp65 and SRrp110 [66]. The function of SF2/ASF in pre-mRNA splicing depends on the context of the pre-mRNA sequence to which it binds, as shown by the fact that SF2/ASF inhibits adenovirus IIIa pre-mRNA splicing when bound to an intronic repressor element [67]. The second RRM of SF2/ASF, and in particular a phylogenetically conserved heptapeptide, SWQDLKD, which is located in the first α-helix of this domain [68], is essential for the splice site selection activity of SF2/ASF [69,70]. The structure of this domain revealed an atypical RRM fold that binds to RNA in a novel manner [71].

Roles of SR proteins in splice site selection

Figure 2
Roles of SR proteins in splice site selection

(A) SR proteins bound to ESE elements recruit U2AF35 to an upstream 3′ ss and U1-70K to the downstream 5′ ss. (B) ESSs recruit hnRNP proteins which block 3′ ss selection by U2AF. SR proteins bound to ESEs can antagonize the action of these splicing repressors, thereby promoting splice site selection. (C) SR proteins can facilitate intron bridging interactions by binding, via the RS domain, to U1-70K and U2AF 35, thereby juxtaposing the 5′ and 3′ ss.

Figure 2
Roles of SR proteins in splice site selection

(A) SR proteins bound to ESE elements recruit U2AF35 to an upstream 3′ ss and U1-70K to the downstream 5′ ss. (B) ESSs recruit hnRNP proteins which block 3′ ss selection by U2AF. SR proteins bound to ESEs can antagonize the action of these splicing repressors, thereby promoting splice site selection. (C) SR proteins can facilitate intron bridging interactions by binding, via the RS domain, to U1-70K and U2AF 35, thereby juxtaposing the 5′ and 3′ ss.

Use of FRAP (fluorescence recovery after photobleaching) approaches revealed a high mobility for SF2/ASF within the nucleus, with kinetics compatible with a diffusion mechanism [72,73]. Advances in imaging have allowed analysis of splicing factors both in speckles and at other sites in the nucleoplasm by FRET (fluorescence resonance energy transfer) [74,75]. A recent study provided a map of SR protein splicing complexes in the nucleus, and showed that they act in exon and intron definition in vivo [76].

The U12-type class of pre-mRNA introns, also known as AT-AC introns, are spliced by the less abundant U12-dependent (minor) spliceosome. The 5′ ss and BP sequences are highly conserved in AT-AC introns, unlike the degenerate sequences found in GT-AG introns (reviewed in [77]). The SR proteins have been shown to participate in AT-AC intron splicing where they promote binding of the U11 and U12 snRNPs to the 5′ ss and BP respectively [78]. There is also evidence that SR proteins contact the pre-mRNA of U12-type introns directly via their RS domain, again in an analogous fashion to that seen in conventional splicing [79].

A delicate interplay of cis-acting sequences and trans-acting factors modulate the splicing of regulated exons in a combinatorial fashion [80]. SR family proteins antagonize the activity of hnRNP A/B proteins in splice site selection, with an excess of hnRNP A1 favouring distal 5′ ss, whereas SF2/ASF promotes the use of proximal 5′ ss [8185]. Thus, the ratio of hnRNP A1 to SR proteins in the nucleus is of great importance in alternative splicing regulation and may have a crucial role in the tissue-specific and developmental control of regulated splicing. Accordingly, the protein levels of SF2/ASF and hnRNP A1 have been found to vary naturally over a very wide range in rat tissues and also in immortal and transformed cell lines [35,86]. SF2/ASF and hnRNP A1 have also been found to have an antagonistic role in the regulation of the neuronal-specific N1 exon of the c-src gene [87]. Antagonism between hnRNP proteins and SR proteins has also been shown to regulate a highly complex pattern of mutually exclusive exons in the Dscam (Down's syndrome cell adhesion molecule) gene in Drosophila [88]. A subset of SR proteins has been shown to activate alternative splicing of the cTNT (cardiac troponin T) exon 5 by directly interacting with a purine-rich ESE. Thus regulation of the levels of individual SR proteins may contribute to the developmental regulation of alternative splicing in cTNT [89]. Interestingly, individual SR proteins can sometimes have antagonistic effects on splice site selection, as is the case with SRp20 and SF2/ASF in the regulation of SRp20 pre-mRNA alternative splicing [90] and of SF2/ASF and SC35 in the regulation of β-tropomyosin [91] and human growth hormone pre-mRNA alternative splicing [92]. Other, non-classical, SR proteins, including p54, SRp38 and SRp86, function solely as negative regulators of alternative splicing, antagonizing classical SR proteins and promoting exon skipping [9395].

SR PROTEIN TARGETS

Several approaches have been taken to identify physiological RNA targets of SR proteins. One such approach, termed SELEX (selected evolution of ligands through exponential enrichment) involves the selection of high-affinity binding sites from randomized pools of RNA sequences [96]. This has resulted in the identification of high-affinity binding sites for SF2/ASF and SC35 [97], SRp40 [98], 9G8 and SRp20 [99] (Table 5). These binding sites consist of purine-rich sequences that resemble 5′ ss or exonic sequences, known to function as splicing enhancers. SELEX can be used in conjunction with large-scale bioinformatic screens to identify further potential binding sites. An alternative to the SELEX approach was the development of a functional SELEX strategy, which involves selection for a sequence that will promote splicing, rather than binding alone [100]. This can be modified further by performing the splicing reactions in a S100 extract with the addition of a single SR protein [101,102]. The motifs identified for the SR proteins SF2/ASF, SC35, SRp40 and SRp55 using functional SELEX were more redundant than those found by conventional SELEX, suggesting that the specificity of binding in vivo depends on factors other than just sequence recognition (Table 5). These motifs have been integrated into a web-based program, known as ESE finder, where input sequences can be scanned for potential ESEs responsive to the above proteins [103].

Table 5
RNA sequences identified as SR protein binding sites

N: any nucleotide; R: purine; Y: pyrimidine; D: A, G or U; K: U or G; M: A or C; S: G or C; W: A or U.

SR protein Binding site Method Reference 
SF2/ASF RGAAGAAC SELEX [97
 AGGACRRAGC SELEX [97
 SRSASGA Functional SELEX [102
 UGRWG CLIP [114
SC35 AGSAGAGUA SELEX [97
 GUUCGAGUA SELEX [97
 GRYYCSYR Functional SELEX [101
 UGUUCSAGWU SELEX [99
 GWUWCCUGCUA SELEX [99
 GGGUAUGCUG SELEX [99
 GAGCAGUAGKS SELEX [99
 AGGAGAU SELEX [99
 UGCNGYY Functional SELEX [211
SRp20 GGUCCUCUUC Gel shift [214
 WCWWC Splicing assay [99
 CUCKUCY RNA affinity [211
SRp75 GAAGGA UV cross-linking [187
SRp40 GAGCAGUCGGCUC SELEX [98
 ACDGS Functional SELEX [102
SRp55/B52 USCGKM Functional SELEX [102
 UCAACCAGGCGAC SELEX [213
9G8 UCAACA UV cross-linking [215
 ACGAGAGAY SELEX [99
 GGACGACGAG Functional SELEX [211
p54 C Rich UV cross-linking [218
SRp30c GACGAC Functional SELEX [212
 AAAGAGCUCGG Functional SELEX [212
 CUGGAUU Gel shift [217
hTra2β (GAA)n SELEX [43
SRm160 Purine rich (GAA)n Splicing assay [216
SR protein Binding site Method Reference 
SF2/ASF RGAAGAAC SELEX [97
 AGGACRRAGC SELEX [97
 SRSASGA Functional SELEX [102
 UGRWG CLIP [114
SC35 AGSAGAGUA SELEX [97
 GUUCGAGUA SELEX [97
 GRYYCSYR Functional SELEX [101
 UGUUCSAGWU SELEX [99
 GWUWCCUGCUA SELEX [99
 GGGUAUGCUG SELEX [99
 GAGCAGUAGKS SELEX [99
 AGGAGAU SELEX [99
 UGCNGYY Functional SELEX [211
SRp20 GGUCCUCUUC Gel shift [214
 WCWWC Splicing assay [99
 CUCKUCY RNA affinity [211
SRp75 GAAGGA UV cross-linking [187
SRp40 GAGCAGUCGGCUC SELEX [98
 ACDGS Functional SELEX [102
SRp55/B52 USCGKM Functional SELEX [102
 UCAACCAGGCGAC SELEX [213
9G8 UCAACA UV cross-linking [215
 ACGAGAGAY SELEX [99
 GGACGACGAG Functional SELEX [211
p54 C Rich UV cross-linking [218
SRp30c GACGAC Functional SELEX [212
 AAAGAGCUCGG Functional SELEX [212
 CUGGAUU Gel shift [217
hTra2β (GAA)n SELEX [43
SRm160 Purine rich (GAA)n Splicing assay [216

A number of computational approaches have also been used to define splicing sequence motifs that regulate exon inclusion. RESCUE (relative enhancer and silencer classification by unanimous enrichment)-ESE predicts sequences which could function as ESEs by statistical analysis of exon–intron and splice site composition [104]. This is based on the observation that ESEs function in a highly position-dependent fashion and are present in constitutively spliced exons and absent in introns. This approach identified 238 candidate ESEs that occurred more frequently in exons with weak splice sites than in exons with strong splice sites. By sequence similarity, these were condensed to ten RESCUE-ESE motif clusters and were shown to have enhancer activity in vivo. Another computational study found 2000 RNA octamers, identified as PESEs (putative ESEs), that were found more frequently in exons than in pseudo-exons or intronless genes [105]. Validation of a subset of these PESEs resulted in 82% exhibiting decreased splicing efficiency when the PESE was mutated [106].

ChIP (chromatin immunoprecipitation) can be used to study nascent RNA–protein interactions, but a variation of this technique named RIP (RNP immuno-precipitation) provides more information on protein–RNA interactions in vivo [107]. RIP involves cross-linking the protein–RNA interactions using formaldehyde, followed by immuno-precipitation of the protein–RNA complexes. After reversing the cross-links, the RNA can be amplified by RT–PCR (reverse transcription–PCR). This technique relies on random hexamer primers to identify unknown RNAs or can be used in conjunction with microarray technology. Reassociation of RNA-binding proteins after cell lysis can complicate the analysis of these results, since observed protein–RNA interactions may not necessarily reflect true in vivo interactions [108]. An adaptation of the SELEX method described above, known as genomic SELEX, uses real genomic sequences rather than random pools, which allows for identification of authentic protein-binding RNA sequences [109,110].

Previously, a novel technique named CLIP (cross-linking and immunoprecipitation) was developed in order to identify in vivo RNA targets [111]. CLIP involves an in vivo photo cross-linking step to capture the protein–RNA interactions, followed by partial RNase digestion to generate RNA tags of approximately 60 nucleotides followed by specific immunoprecipitation of the protein of interest. An advantage of this method is that by using an in vivo photo cross-linking step, which induces a covalent protein–nucleic acid bond, these interactions are preserved in an intact cell. CLIP was used to characterize the in vivo RNA binding targets of the neuronal-specific splicing factor Nova and has allowed the generation of an RNA map to predict splicing regulation dependent on this protein [112,113]. It has also been used for other RNA binding proteins, including SF2/ASF [114] (Table 5). The identification of SR protein targets and the study of how tissue-specific patterns of splicing change, depending on the complement of SR proteins present, can also be analysed by alternative splicing microarrays [115117].

The additional importance of structural elements in splice site selection should also be taken into account. For example, RNA structure elements associated with alternative splice-site selection have been recently identified in the human genome [118]. In addition, RNA folding has been shown to affect the recruitment of SR proteins to mouse and human ESE elements in the fibronectin EDA exon [119,120]. Finally, competing intronic RNA secondary structures help to define a complex pattern of mutually exclusive exons in the Dscam gene [121].

SR PROTEINS HAVE FUNCTIONAL SPECIFICITY

Initially, the ability of different individual SR proteins to complement splicing-deficient extracts suggested that SR proteins may have redundant functions. However, the sequence-specific RNA binding ability of individual SR proteins and differences in their ability to regulate alternative splicing suggested otherwise [35,122,123].

A growing body of evidence showed that individual SR proteins were not functionally equivalent in Drosophila, Caenorhabditis elegans and mouse models. For instance, SF2/ASF was shown to be an essential factor for cell viability in a chicken cell line and its depletion could not be rescued by expression of SC35 or SRp40, indicating a non-redundant function of SF2/ASF [124]. Other studies have shown that the SR protein B52/SRp55 is essential for Drosophila development [125,126]. B52/SRp55 was shown not to be essential for the splicing of a number of substrates [127], but specific substrates that were mis-spliced in B52-deficient flies were identified [128,129]. Furthermore, B52/SRp55 regulates the inclusion of alternative exon 2 in eyeless, a master regulator of eye development in Drosophila, resulting in the production of a protein isoform that gives rise to a small-eye phenotype. Conversely, the canonical eyeless isoform induces eye overgrowth [130].

Use of RNAi (RNA interference) to inhibit SR protein function during C. elegans development revealed that depletion of the orthologue of the mammalian SF2/ASF (CeSF2/ASF) resulted in embryonic lethality, which indicates an essential, non-redundant, role for this gene during nematode development. By contrast, RNAi-mediated depletion of other SR genes resulted in no obvious phenotype, which is indicative of functional redundancy [131133]. The function of SR proteins has also been studied in mouse model systems (recently reviewed in [134]). All SR-null mice for SRp20 [135], SC35 [136,137] and SF2/ASF [138] show an early embryonic phenotype indicating that SR proteins are not redundant. However, these essential functions appear to be tissue- or developmental stage-specific, as cultured cells from the knockout mice are viable. The generation of conditional knockouts has allowed further characterization of SR protein function in different tissue types or at various developmental time points. Deletion of SC35 in mice results in decreased thymus size and a major defect in T-cell maturation [136], whereas tissue-specific ablation of SC35 in the heart has been shown to cause dilated cardiomyopathy [137]. SF2/ASF has also been shown to have a role in cardiac function; however its main function is in the developmental process of postnatal heart remodelling [138]. Mice knockouts of other splicing factors, including Nova, U2AF26, hnRNP U and hnRNP C, also result in embryonic lethality or developmental defects, which highlights the importance of splicing for the correct regulation of biological processes such as embryogenesis and tissue maintenance [134].

POST-SPLICING ACTIVITIES OF SR PROTEINS

SR proteins also function in mRNA processing reactions that occur after splicing, including mRNA nuclear export, NMD (nonsense-mediated decay) and translation (reviewed in [139]). SR proteins display a nuclear localization pattern and are found to accumulate in splicing speckles [140]. However, a subset of SR proteins, which includes SF2/ASF, SRp20 and 9G8, shuttle continuously between the nucleus and the cytoplasm [141], reminiscent of what was found for a subset of hnRNP proteins [142]. This suggested that the shuttling SR proteins may function in cytoplasmic processes, or be involved in the transport of spliced mRNA. Indeed, SRp20, 9G8 and SF2/ASF function in the nucleocytoplasmic export of mRNA by interacting with the mRNA nuclear export receptor TAP/NFX1 [143,144], exhibiting a higher affinity when hypophosphorylated [145].

SR proteins have also been implicated in regulating the NMD pathway, whereby mRNAs containing premature termination codons are targeted for degradation. Increased expression of a subset of SR proteins, including SF2/ASF, SC35, SRp40 and SRp55, strongly enhanced NMD [146]. Interestingly, this effect does not appear to be dependent on their nucleocytoplasmic shuttling, suggesting a role for SR proteins in enhancing nuclear steps of NMD. A recent study showed that SF2/ASF has the potential to affect the cellular site of NMD, shifting this process to the nuclear compartment before mRNA release from nuclei [147].

SF2/ASF controls alternative splicing of pre-mRNAs encoding the kinases MNK2 [MAPK (mitogen-activated protein kinase)-interacting kinase 2] and S6K1 (S6 kinase 1) that are involved in translational regulation. Increased expression of SF2/ASF results in the production of an isoform of MNK2, which promotes MAPK-independent eIF4E (eukaryotic initiation factor 4E) phosphorylation, and an unusual oncogenic isoform of S6K1, thereby enhancing cap-dependent translation [148]. SR proteins have also been shown to directly affect translational regulation. SF2/ASF associates with polyribosomes in cytoplasmic extracts and enhances the translation of an ESE-containing luciferase reporter both in vivo and in vitro [149]. This direct effect of SF2/ASF in the regulation of the translation of SF2/ASF-bound mRNA targets is mediated by the recruitment of components of the mTOR (mammalian target of rapamycin) signalling pathway, resulting in phosphorylation and release of 4E-BP, a competitive inhibitor of cap-dependent translation [150]. The role of mTOR in the activation of S6K1, which phosphorylates eIF4B and S6, promoting translation initiation, may also be enhanced by SF2/ASF [151] (Figure 3). Other SR proteins have also been reported to function in translation. SRp20 has been shown to function in IRES (internal ribosome entry site)-mediated translation of a viral RNA [152], whereas 9G8 plays a role in translation of unspliced mRNA containing a CTE (constitutive transport element) [153].

Role of SF2/ASF in translation

Figure 3
Role of SF2/ASF in translation

SF2/ASF-bound mRNAs recruit the mTOR kinase resulting in the phosphorylation and release of 4E-BP, leading to in enhanced translation initiation. The mTOR kinase phosphorylates S6K1, which promotes translation initiation, and this may also be enhanced by SF2/ASF. The Mnk2b isoform induced by SF2/ASF-dependent alternative splicing also leads to translation activation.

Figure 3
Role of SF2/ASF in translation

SF2/ASF-bound mRNAs recruit the mTOR kinase resulting in the phosphorylation and release of 4E-BP, leading to in enhanced translation initiation. The mTOR kinase phosphorylates S6K1, which promotes translation initiation, and this may also be enhanced by SF2/ASF. The Mnk2b isoform induced by SF2/ASF-dependent alternative splicing also leads to translation activation.

The results described in this section demonstrate that SR protein function is not restricted to nuclear mRNA splicing, and it seems sensible that proteins already bound to spliced mRNA may function in subsequent processing events as they are already in place to facilitate future interactions. However, it also highlights the requirement for exquisite regulation of SR proteins in order to maintain their role in cytoplasmic processing of mRNAs without disrupting nuclear processes, which are highly sensitive to the relative concentration of splicing factors.

SR PROTEIN REGULATION

A dynamic cycle of phosphorylation and dephosphorylation is required for pre-mRNA splicing [154], this being related, at least in part, to the phosphorylation status of SR proteins. The RS domain of SR proteins is extensively phosphorylated on serine residues and this plays an important role in regulating the subcellular localization and activity of SR proteins (reviewed in [40]). For instance, phosphorylation of the RS domain in SF2/ASF acts to enhance protein–protein interactions with other RS domain-containing splicing factors, such as U1-70K [155], whereas dephosphorylation of SR and SR-related proteins is required for splicing catalysis to proceed [156,157].

Several protein kinase families have been shown to phosphorylate the RS domain of SR proteins, including the SRPK (SR protein kinase) family [158,159], the Clk/Sty family of dual-specificity kinases [160] and topoisomerase I [161]. SRPK1 is a serine-specific kinase that binds to a ‘docking motif’ in SF2/ASF that restricts phosphorylation to the N-terminus of the RS domain [162]. In contrast, Clk/Sty can phosphorylate the whole of the RS domain, resulting in a hyperphosphorylated state [163]. The phosphorylation status of the RS domain of SR proteins is also important in the post-splicing activities of SR proteins. A hypophosphorylated RS domain is required for the interaction of nucleocytoplasmic shuttling SR proteins with the TAP/NFX1 nuclear export receptor [145]. SR protein kinases present in the cytoplasm are required to re-phosphorylate the RS domain before the SR protein can return to the nucleus [164]. RS domain dephosphorylation also plays an important role in sorting SR proteins in the nucleus, where shuttling SR proteins and non-shuttling SR proteins are recycled via different pathways [165]. In the cytoplasm, dephosphorylation of the RS domain enhances mRNA binding of SF2/ASF and contributes to its role in translation [166]. SR protein phosphorylation is also important in developmental regulation, as demonstrated in the nematode Ascaris lumbricoides [167].

Importantly, alternative splicing is extensively regulated by signal transduction pathways, whereby signalling cascades can link the splicing machinery to the exterior environment [168]. For instance, the SR protein SRp38 is dephosphorylated upon heat shock by the phosphatase PP1 and becomes a potent splicing repressor [169,170]. Two other well described examples are the insulin-induced promotion of protein kinase C beta II alternative splicing as a result of SRp40 phosphorylation by Akt [171], and the growth factor induced alternative splicing of the fibronectin EDA exon, via phosphorylation of SF2/ASF and 9G8 by Akt [172]. Interestingly, growth factors not only modify the alternative splicing pattern of the fibronectin gene but also affect its translation in an SR protein-dependent fashion, providing an example where modification of SR protein activity in response to extracellular stimulation leads to a concerted regulation of splicing and translation [173]. Caffeine regulates the alternative splicing of a subset of cancer-associated genes, including the tumor suppressor KLF6. This response is mediated by the SR protein, SC35, which is in turn induced by caffeine, and its overexpression is sufficient to recapitulate this regulated event [174]. Another example of the tight regulation of the SR protein family members is exemplified by the common existence of unproductive splicing of SR genes. This is associated with ultraconserved elements that overlap alternatively spliced exons and target the resulting mRNAs for degradation by NMD [175,176].

SR PROTEINS AND HUMAN DISEASE

Disruption of the many roles of SR family proteins can lead to human disease. Approximately 15% of mutations that cause genetic disease affect pre-mRNA splicing [177], targeting conserved splicing signals including the 5′ ss, 3′ ss and BP, as well as enhancer and silencer sequences. Indeed, analysis of a database of 50 single-base substitutions associated with exon-skipping in human genes revealed that more than 50% of these mutations disrupted at least one of the target motifs for the SR proteins SF2/ASF, SRp40, SRp55 and SC35 [178,179] (reviewed in [180]).

Cancer

There is emerging evidence that establishes a connection between the mis-expression of SR proteins and the development of cancerous tissues, mainly as a result of change in the alternative splicing patterns of key transcripts. Increased expression of SR proteins usually correlates with cancer progression, as shown by elevated expression of SF2/ASF, SC35 and SRp20 in malignant ovarian tissue [181] and of several classical SR proteins in breast cancer [182]. However, the mRNA levels of SF2/ASF, SRp40, SRp55 and SRp75 are lower in non-familial colon adenocarcinomas than adjacent non-pathological tissue, suggesting the levels of SR proteins in cancerous tissues may be tissue-specific [183].

SF2/ASF was found to be upregulated in several human tumours, including lung, colon, kidney, liver, pancreas and breast tumours [148]. Accordingly, gene amplification of SFRS1, which codes for SF2/ASF, is commonly found in breast cancers [184]. Furthermore, increased expression of SF2/ASF transforms immortal rodent fibroblasts and leads to the formation of sarcomas in nude mice, whereas downregulation of SF2/ASF reverses these phenotypes. Other SR proteins, such as SC35 and SRp55, did not have transforming activity, indicating a highly specific role of SF2/ASF in cancer development. Altogether, these results support the notion that SFRS1 is a proto-oncogene [148]. Another RNA target for SF2/ASF that can explain its transforming activity is the proto-oncogene Ron (macrophage-stimulating 1 receptor). SF2/ASF regulates the alternative splicing of Ron pre-mRNA by binding to an ESE in exon 12 and promoting skipping of exon 11 [185]. This results in production of ΔRon, a constitutively active isoform which confers increased motility on expressing cells, a characteristic required for tumour metastasis. Importantly, abnormal accumulation of ΔRon occurs in breast and colon tumours and the levels of SF2/ASF mirror those of ΔRon [185].

HIV

HIV-1 uses a combination of several alternative 5′ and 3′ ss to generate more than 40 different mRNAs from its full-length genomic pre-mRNA [186]. Several SR proteins have been shown to regulate different splicing events affecting the viral transcripts. For instance, SRp75 binds a viral ESE [187], whereas SF2/ASF and SRp40 bind a guanosine-adenosine-rich ESE identified in exon 5 of HIV-1 leading to its inclusion [188]. Furthermore, HIV infection induces changes in the levels of splicing factors, including SR proteins, that regulate viral alternative splicing and therefore virus replication [189]. Current drugs used to treat HIV-infected patients involve the use of combinations of retrovirals that specifically target viral proteins such as reverse transcriptase, protease and gp120 (reviewed by [190]). HIV viral production is tightly linked with alternative splicing of the viral HIV-1 pre-mRNA. Therefore, an alternative and novel approach to circumvent the problem of resistance of HIV-1 to current inhibitors is to target the role of SR proteins in HIV pre-mRNA splicing [191]. A screen for chemical inhibitors of pre-mRNA splicing identified indole derivatives that specifically inhibit ESE-dependent splicing by interacting directly and selectively with individual SR proteins [192]. One such small chemical compound was shown to prevent the production of key viral HIV-1 regulatory proteins whose splicing depends on weak 3′ ss [193].

SMA (spinal muscular atrophy)

SMA is a severe hereditary neurodegenerative disorder that results from the lack of a functional SMN1 (survival of motor neuron 1) gene product, which is a key component of the snRNP biogenesis pathway. An SMN1 paralogue, the centromeric SMN2 gene, differs by a single nucleotide change, a C>T transition in exon 7, that causes substantial skipping of this exon and results in the production of a non-functional protein. This exon-skipping event has been attributed either to the loss of an SF2/ASF-dependent exonic splicing enhancer [194] or to the creation of an hnRNP A/B-dependent exonic splicing silencer [195].

Several therapeutic approaches, which focus on altering the splicing of SMN2 to induce exon 7 inclusion and would result in functional SMN protein in affected patients, have made use of antisense technology [196]. The first uses bifunctional ASOs (antisense oligonucleotides) which are comprised of oligonucleotides complementary to exon 7, with a non-complementary tail containing exonic-splicing enhancer motifs recognized by SR proteins. This approach has been shown to mediate the binding of SF2/ASF to SMN2 exon 7 and promote exon inclusion [197]. An alternative strategy has recently been developed based on bifunctional U7 snRNAs that contain both an antisense sequence targeting exon 7 and a splicing enhancer sequence to improve recognition of the exon. These RNAs are stably introduced into cells and the U7 snRNAs become incorporated into snRNPs, inducing a prolonged restoration of SMN protein in SMA fibroblasts [198]. Another approach uses ESSENCE (exon-specific splicing enhancement by small chimaeric effectors) molecules, which also contain an antisense moiety complementary to the target exon and a minimal RS domain peptide designed to mimic the effect of SR proteins. The ESSENCE molecules have also been shown to restore SMN2 levels to that of wild-type SMN1 levels by exon inclusion [199]. Interestingly, the antisense moiety alone stimulated exon 7 inclusion, and functional full-length SMN protein was produced in primary fibroblasts from a type I SMA patient [200,201]. An in vivo delivery system has been developed for bifunctional RNAs using a viral vector [202].

Other human diseases

It has been demonstrated that SR proteins are autoantigens in patients with systemic lupus erythematosus [203]. SR family proteins have also been shown to have regulatory roles in the splicing of several pre-mRNAs associated with human disease. For example, SF2/ASF and SRp40 bind to an ISS and promote exclusion of exon 9 of CFTR (cystic fibrosis transmembrane conductance regulator) [204]. Lack of exon 9 correlates with the occurrence of monosymptomatic and full forms of cystic fibrosis disease [205]. SC35 has a role in the aberrant splicing of the E1αPDH (E1α pyruvate dehydrogenase) mRNA, resulting in a defect of mitochondrial energy metabolism. An intronic mutation of the E1αPDH gene that activates a cryptic 5′ ss leads to mis-spliced mRNA and defective protein [206]. SC35 has been shown to significantly activate splicing at this cryptic site. Accordingly, RNAi-mediated depletion of SC35 in primary fibroblasts from the affected patient could restore the normal E1αPDH splicing pattern [207]. It has also been recently reported that the expression of SRp20 is elevated in bipolar patients, which may explain the aberrant splicing of glucocorticoid receptor α in these patients [208].

CONCLUSIONS AND PERSPECTIVES

This article has reviewed the many roles of SR proteins in gene expression. An obvious question is, why are SR proteins involved in so many cellular functions? These are very abundant nuclear proteins and a subset of them shuttle to the cytoplasm where they are involved in NMD and translation regulation. Their function in different biochemical activities may underlie the extensive network of coupling amongst gene expression machines [209]. It should be noted that SR proteins are not the only proteins coupling nuclear and cytoplamic RNA processing events, since the EJC (exon junction complex), a multiprotein complex deposited as a consequence of pre-mRNA splicing, links pre-mRNA splicing with mRNA export, NMD and translation (reviewed in [210]). Individual SR proteins regulate subsets of pre-mRNAs via splicing in the nucleus and post-splicing processes in the cytoplasm. The next few years will see considerable efforts to identify physiological RNA targets of SR proteins and gain a better understanding of the many cellular functions of these master regulators of RNA processing.

We are grateful to Sonia Guil (Barcelona) for critical reading of this manuscript.

Abbreviations

     
  • BP

    branch-point

  •  
  • CLIP

    cross-linking and immunoprecipitation

  •  
  • CTD

    C-terminal domain

  •  
  • Dscam

    Down's syndrome cell adhesion molecule

  •  
  • E1αPDH

    E1α pyruvate dehydrogenase

  •  
  • eIF

    eukaryotic initiation factor

  •  
  • ESE

    exonic splicing enhancer

  •  
  • ESS

    exonic splicing silencer

  •  
  • hnRNP

    heterogeneous nuclear RNP

  •  
  • ISS

    intronic splicing silencer

  •  
  • mTOR

    mammalian target of rapamycin

  •  
  • NMD

    non-sense-mediated decay

  •  
  • PESE

    putative exonic splicing enhancer

  •  
  • RESCUE

    relative enhancer and silencer classification by unanimous enrichment

  •  
  • RNAi

    RNA interference

  •  
  • RNAP II

    RNA polymerase II

  •  
  • RNP

    ribonucleoprotein particle

  •  
  • RRM

    RNA recognition motif

  •  
  • S6K1

    S6 kinase

  •  
  • SC35

    spliceosomal component 35

  •  
  • SELEX

    selected evolution of ligands through exponential enrichment

  •  
  • SF2/ASF

    splicing factor 2/alternative splicing factor

  •  
  • SMA

    spinal muscular atrophy

  •  
  • SMN

    survival of motor neuron

  •  
  • snRNP

    small nuclear RNP

  •  
  • 3′/5′ ss

    3′/5′ splice site

  •  
  • Tra

    transformer

  •  
  • U2AF

    U2 snRNP auxiliary factor

FUNDING

This work was supported by the Medical Research Council and by the European Alternative Splicing Network of Excellence, EURASNET [grant number S18238].

References

References
1
Berget
S. M.
Moore
C.
Sharp
P. A.
Spliced segments at the 5′ terminus of adenovirus 2 late mRNA
Proc. Natl. Acad. Sci. U.S.A.
1977
, vol. 
74
 (pg. 
3171
-
3175
)
2
Chow
L. T.
Gelinas
R. E.
Broker
T. R.
Roberts
R. J.
An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA
Cell
1977
, vol. 
12
 (pg. 
1
-
8
)
3
Kramer
A.
The structure and function of proteins involved in mammalian pre-mRNA splicing
Annu. Rev. Biochem.
1996
, vol. 
65
 (pg. 
367
-
409
)
4
Will
C. L.
Luhrmann
R.
Spliceosomal UsnRNP biogenesis, structure and function
Curr. Opin. Cell Biol.
2001
, vol. 
13
 (pg. 
290
-
301
)
5
Matlin
A. J.
Moore
M. J.
Spliceosome assembly and composition
Adv. Exp. Med. Biol.
2007
, vol. 
623
 (pg. 
14
-
35
)
6
Rappsilber
J.
Ryder
U.
Lamond
A. I.
Mann
M.
Large-scale proteomic analysis of the human spliceosome
Genome Res.
2002
, vol. 
12
 (pg. 
1231
-
1245
)
7
Zhou
Z.
Licklider
L. J.
Gygi
S. P.
Reed
R.
Comprehensive proteomic analysis of the human spliceosome
Nature
2002
, vol. 
419
 (pg. 
182
-
185
)
8
Bessonov
S.
Anokhina
M.
Will
C. L.
Urlaub
H.
Luhrmann
R.
Isolation of an active step I spliceosome and composition of its RNP core
Nature
2008
, vol. 
452
 (pg. 
846
-
850
)
9
Jurica
M. S.
Moore
M. J.
Pre-mRNA splicing: awash in a sea of proteins
Mol. Cell
2003
, vol. 
12
 (pg. 
5
-
14
)
10
Fu
X. D.
The superfamily of arginine/serine-rich splicing factors
RNA
1995
, vol. 
1
 (pg. 
663
-
680
)
11
Graveley
B. R.
Sorting out the complexity of SR protein functions
RNA
2000
, vol. 
6
 (pg. 
1197
-
1211
)
12
Bourgeois
C. F.
Lejeune
F.
Stevenin
J.
Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA
Prog. Nucleic Acid Res. Mol. Biol.
2004
, vol. 
78
 (pg. 
37
-
88
)
13
Chou
T. B.
Zachar
Z.
Bingham
P. M.
Developmental expression of a regulatory gene is programmed at the level of splicing
EMBO J.
1987
, vol. 
6
 (pg. 
4095
-
4104
)
14
Boggs
R. T.
Gregor
P.
Idriss
S.
Belote
J. M.
McKeown
M.
Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene
Cell
1987
, vol. 
50
 (pg. 
739
-
747
)
15
Amrein
H.
Gorman
M.
Nothiger
R.
The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein
Cell
1988
, vol. 
55
 (pg. 
1025
-
1035
)
16
Ge
H.
Zuo
P.
Manley
J. L.
Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators
Cell
1991
, vol. 
66
 (pg. 
373
-
382
)
17
Krainer
A. R.
Mayeda
A.
Kozak
D.
Binns
G.
Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators
Cell
1991
, vol. 
66
 (pg. 
383
-
394
)
18
Fu
X. D.
Maniatis
T.
Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus
Nature
1990
, vol. 
343
 (pg. 
437
-
441
)
19
Spritz
R. A.
Strunk
K.
Surowy
C. S.
Hoch
S. O.
Barton
D. E.
Francke
U.
The human U1-70K snRNP protein: cDNA cloning, chromosomal localization, expression, alternative splicing and RNA-binding
Nucleic Acids Res.
1987
, vol. 
15
 (pg. 
10373
-
10391
)
20
Theissen
H.
Etzerodt
M.
Reuter
R.
Schneider
C.
Lottspeich
F.
Argos
P.
Luhrmann
R.
Philipson
L.
Cloning of the human cDNA for the U1 RNA-associated 70K protein
EMBO J.
1986
, vol. 
5
 (pg. 
3209
-
3217
)
21
Krainer
A. R.
Conway
G. C.
Kozak
D.
Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells
Genes Dev.
1990
, vol. 
4
 (pg. 
1158
-
1171
)
22
Ge
H.
Manley
J. L.
A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro
Cell
1990
, vol. 
62
 (pg. 
25
-
34
)
23
Roth
M. B.
Murphy
C.
Gall
J. G.
A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle
J. Cell Biol.
1990
, vol. 
111
 (pg. 
2217
-
2223
)
24
Zahler
A. M.
Lane
W. S.
Stolk
J. A.
Roth
M. B.
SR proteins: a conserved family of pre-mRNA splicing factors
Genes Dev.
1992
, vol. 
6
 (pg. 
837
-
847
)
25
Wu
J. Y.
Maniatis
T.
Specific interactions between proteins implicated in splice site selection and regulated alternative splicing
Cell
1993
, vol. 
75
 (pg. 
1061
-
1070
)
26
Kohtz
J. D.
Jamison
S. F.
Will
C. L.
Zuo
P.
Luhrmann
R.
Garcia-Blanco
M. A.
Manley
J. L.
Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors
Nature
1994
, vol. 
368
 (pg. 
119
-
124
)
27
Shen
H.
Kan
J. L.
Green
M. R.
Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly
Mol. Cell
2004
, vol. 
13
 (pg. 
367
-
376
)
28
Shen
H.
Green
M. R.
A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly
Mol. Cell
2004
, vol. 
16
 (pg. 
363
-
373
)
29
Hertel
K. J.
Graveley
B. R.
RS domains contact the pre-mRNA throughout spliceosome assembly
Trends Biochem. Sci.
2005
, vol. 
30
 (pg. 
115
-
118
)
30
Caceres
J. F.
Misteli
T.
Screaton
G. R.
Spector
D. L.
Krainer
A. R.
Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity
J. Cell Biol.
1997
, vol. 
138
 (pg. 
225
-
238
)
31
Kataoka
N.
Bachorik
J. L.
Dreyfuss
G.
Transportin-SR, a nuclear import receptor for SR proteins
J. Cell Biol.
1999
, vol. 
145
 (pg. 
1145
-
1152
)
32
Lai
M. C.
Lin
R. I.
Huang
S. Y.
Tsai
C. W.
Tarn
W. Y.
A human importin-β family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
7950
-
7957
)
33
Krainer
A. R.
Conway
G. C.
Kozak
D.
The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites
Cell
1990
, vol. 
62
 (pg. 
35
-
42
)
34
Fu
X. D.
Mayeda
A.
Maniatis
T.
Krainer
A. R.
General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5′ and 3′ splice site selection
Proc. Natl. Acad. Sci. U.S.A.
1992
, vol. 
89
 (pg. 
11224
-
11228
)
35
Zahler
A. M.
Neugebauer
K. M.
Lane
W. S.
Roth
M. B.
Distinct functions of SR proteins in alternative pre-mRNA splicing
Science
1993
, vol. 
260
 (pg. 
219
-
222
)
36
Boucher
L.
Ouzounis
C. A.
Enright
A. J.
Blencowe
B. J.
A genome-wide survey of RS domain proteins
RNA
2001
, vol. 
7
 (pg. 
1693
-
1701
)
37
Blencowe
B. J.
Issner
R.
Nickerson
J. A.
Sharp
P. A.
A coactivator of pre-mRNA splicing
Genes Dev.
1998
, vol. 
12
 (pg. 
996
-
1009
)
38
Szymczyna
B. R.
Bowman
J.
McCracken
S.
Pineda-Lucena
A.
Lu
Y.
Cox
B.
Lambermon
M.
Graveley
B. R.
Arrowsmith
C. H.
Blencowe
B. J.
Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing
Genes Dev.
2003
, vol. 
17
 (pg. 
461
-
475
)
39
Blencowe
B. J.
Bowman
J. A.
McCracken
S.
Rosonina
E.
SR-related proteins and the processing of messenger RNA precursors
Biochem. Cell Biol.
1999
, vol. 
77
 (pg. 
277
-
291
)
40
Lin
S.
Fu
X. D.
SR proteins and related factors in alternative splicing
Adv. Exp. Med. Biol.
2007
, vol. 
623
 (pg. 
107
-
122
)
41
Dauwalder
B.
Maya-Manzanares
F.
Mattox
W.
A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions
Proc. Natl. Acad. Sci. U.S.A.
1996
, vol. 
93
 (pg. 
9004
-
9009
)
42
Beil
B.
Screaton
G.
Stamm
S.
Molecular cloning of htra2-β-1 and htra2-β-2, two human homologs of tra-2 generated by alternative splicing
DNA Cell Biol.
1997
, vol. 
16
 (pg. 
679
-
690
)
43
Tacke
R.
Tohyama
M.
Ogawa
S.
Manley
J. L.
Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing
Cell
1998
, vol. 
93
 (pg. 
139
-
148
)
44
Ohno
M.
Shimura
Y.
A human RNA helicase-like protein, HRH1, facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome
Genes Dev.
1996
, vol. 
10
 (pg. 
997
-
1007
)
45
Zhou
Z.
Reed
R.
Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing
EMBO J.
1998
, vol. 
17
 (pg. 
2095
-
2106
)
46
Misteli
T.
Caceres
J. F.
Spector
D. L.
The dynamics of a pre-mRNA splicing factor in living cells
Nature
1997
, vol. 
387
 (pg. 
523
-
527
)
47
Bauren
G.
Wieslander
L.
Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription
Cell
1994
, vol. 
76
 (pg. 
183
-
192
)
48
Beyer
A. L.
Osheim
Y. N.
Splice site selection, rate of splicing, and alternative splicing on nascent transcripts
Genes Dev.
1988
, vol. 
2
 (pg. 
754
-
765
)
49
Yuryev
A.
Patturajan
M.
Litingtung
Y.
Joshi
R. V.
Gentile
C.
Gebara
M.
Corden
J. L.
The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins
Proc. Natl. Acad. Sci. U.S.A.
1996
, vol. 
93
 (pg. 
6975
-
6980
)
50
Das
R.
Yu
J.
Zhang
Z.
Gygi
M. P.
Krainer
A. R.
Gygi
S. P.
Reed
R.
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing
Mol. Cell
2007
, vol. 
26
 (pg. 
867
-
881
)
51
Lin
S.
Coutinho-Mansfield
G.
Wang
D.
Pandit
S.
Fu
X. D.
The splicing factor SC35 has an active role in transcriptional elongation
Nat. Struct. Mol. Biol.
2008
, vol. 
15
 (pg. 
819
-
826
)
52
Fededa
J. P.
Kornblihtt
A. R.
A splicing regulator promotes transcriptional elongation
Nat. Struct. Mol. Biol.
2008
, vol. 
15
 (pg. 
779
-
781
)
53
Li
X.
Manley
J. L.
Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
Cell
2005
, vol. 
122
 (pg. 
365
-
378
)
54
Xiao
R.
Sun
Y.
Ding
J. H.
Lin
S.
Rose
D. W.
Rosenfeld
M. G.
Fu
X. D.
Li
X.
Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis
Mol. Cell Biol.
2007
, vol. 
27
 (pg. 
5393
-
5402
)
55
Li
X.
Niu
T.
Manley
J. L.
The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability
RNA
2007
, vol. 
13
 (pg. 
2108
-
2115
)
56
Hicks
M. J.
Yang
C. R.
Kotlajich
M. V.
Hertel
K. J.
Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns
PLoS Biol.
2006
, vol. 
4
 pg. 
e147
 
57
de la Mata
M.
Alonso
C. R.
Kadener
S.
Fededa
J. P.
Blaustein
M.
Pelisch
F.
Cramer
P.
Bentley
D.
Kornblihtt
A. R.
A slow RNA polymerase II affects alternative splicing in vivo
Mol. Cell
2003
, vol. 
12
 (pg. 
525
-
532
)
58
de la Mata
M.
Kornblihtt
A. R.
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
Nat. Struct. Mol. Biol.
2006
, vol. 
13
 (pg. 
973
-
980
)
59
Kornblihtt
A. R.
Coupling transcription and alternative splicing
Adv. Exp. Med. Biol.
2007
, vol. 
623
 (pg. 
175
-
189
)
60
Ibrahim
E. C.
Schaal
T. D.
Hertel
K. J.
Reed
R.
Maniatis
T.
Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers
Proc. Natl. Acad. Sci. U.S.A.
2005
, vol. 
102
 (pg. 
5002
-
5007
)
61
Graveley
B. R.
Hertel
K. J.
Maniatis
T.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing
RNA
2001
, vol. 
7
 (pg. 
806
-
818
)
62
Robberson
B. L.
Cote
G. J.
Berget
S. M.
Exon definition may facilitate splice site selection in RNAs with multiple exons
Mol. Cell Biol.
1990
, vol. 
10
 (pg. 
84
-
94
)
63
Martinez-Contreras
R.
Cloutier
P.
Shkreta
L.
Fisette
J. F.
Revil
T.
Chabot
B.
hnRNP proteins and splicing control
Adv. Exp. Med. Biol.
2007
, vol. 
623
 (pg. 
123
-
147
)
64
Zhu
J.
Mayeda
A.
Krainer
A. R.
Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins
Mol. Cell
2001
, vol. 
8
 (pg. 
1351
-
1361
)
65
Roscigno
R. F.
Garcia-Blanco
M. A.
SR proteins escort the U4/U6·U5 tri-snRNP to the spliceosome
RNA
1995
, vol. 
1
 (pg. 
692
-
706
)
66
Makarova
O. V.
Makarov
E. M.
Luhrmann
R.
The 65 and 110 kDa SR-related proteins of the U4/U6·U5 tri-snRNP are essential for the assembly of mature spliceosomes
EMBO J.
2001
, vol. 
20
 (pg. 
2553
-
2563
)
67
Kanopka
A.
Muhlemann
O.
Akusjarvi
G.
Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA
Nature
1996
, vol. 
381
 (pg. 
535
-
538
)
68
Birney
E.
Kumar
S.
Krainer
A. R.
Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors
Nucleic Acids Res.
1993
, vol. 
21
 (pg. 
5803
-
5816
)
69
Dauksaite
V.
Akusjarvi
G.
The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5′-splice site selection
Biochem. J.
2004
, vol. 
381
 (pg. 
343
-
350
)
70
Dauksaite
V.
Akusjarvi
G.
Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
12579
-
12586
)
71
Tintaru
A. M.
Hautbergue
G. M.
Hounslow
A. M.
Hung
M. L.
Lian
L. Y.
Craven
C. J.
Wilson
S. A.
Structural and functional analysis of RNA and TAP binding to SF2/ASF
EMBO Rep.
2007
, vol. 
8
 (pg. 
756
-
762
)
72
Kruhlak
M. J.
Lever
M. A.
Fischle
W.
Verdin
E.
Bazett-Jones
D. P.
Hendzel
M. J.
Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments
J. Cell Biol.
2000
, vol. 
150
 (pg. 
41
-
51
)
73
Phair
R. D.
Misteli
T.
High mobility of proteins in the mammalian cell nucleus
Nature
2000
, vol. 
404
 (pg. 
604
-
609
)
74
Chusainow
J.
Ajuh
P. M.
Trinkle-Mulcahy
L.
Sleeman
J. E.
Ellenberg
J.
Lamond
A. I.
FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35 RNA
2005
, vol. 
11
 (pg. 
1201
-
1214
)
75
Rino
J.
Desterro
J. M.
Pacheco
T. R.
Gadella
T. W.
Jr
Carmo-Fonseca
M.
Splicing factors SF1 and U2AF associate in extra-spliceosomal complexes
Mol. Cell Biol.
2008
, vol. 
28
 (pg. 
3045
-
3057
)
76
Ellis
J. D.
Lleres
D.
Denegri
M.
Lamond
A. I.
Caceres
J. F.
Spatial mapping of splicing factor complexes involved in exon and intron definition
J. Cell Biol.
2008
, vol. 
181
 (pg. 
921
-
934
)
77
Will
C. L.
Luhrmann
R.
Splicing of a rare class of introns by the U12-dependent spliceosome
Biol. Chem.
2005
, vol. 
386
 (pg. 
713
-
724
)
78
Hastings
M. L.
Krainer
A. R.
Functions of SR proteins in the U12-dependent AT-AC pre-mRNA splicing pathway
RNA
2001
, vol. 
7
 (pg. 
471
-
482
)
79
Shen
H.
Green
M. R.
RS domain-splicing signal interactions in splicing of U12-type and U2-type introns
Nat. Struct. Mol. Biol.
2007
, vol. 
14
 (pg. 
597
-
603
)
80
Smith
C. W.
Valcarcel
J.
Alternative pre-mRNA splicing: the logic of combinatorial control
Trends Biochem. Sci.
2000
, vol. 
25
 (pg. 
381
-
388
)
81
Mayeda
A.
Krainer
A. R.
Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2
Cell
1992
, vol. 
68
 (pg. 
365
-
375
)
82
Eperon
I. C.
Ireland
D. C.
Smith
R. A.
Mayeda
A.
Krainer
A. R.
Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF
EMBO J.
1993
, vol. 
12
 (pg. 
3607
-
3617
)
83
Caceres
J. F.
Stamm
S.
Helfman
D. M.
Krainer
A. R.
Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors
Science
1994
, vol. 
265
 (pg. 
1706
-
1709
)
84
Yang
X.
Bani
M. R.
Lu
S. J.
Rowan
S.
Ben David
Y.
Chabot
B.
The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5′ splice site selection in vivo
Proc. Natl. Acad. Sci. U.S.A.
1994
, vol. 
91
 (pg. 
6924
-
6928
)
85
Eperon
I. C.
Makarova
O. V.
Mayeda
A.
Munroe
S. H.
Caceres
J. F.
Hayward
D. G.
Krainer
A. R.
Selection of alternative 5′ splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1 Mol
Cell Biol.
2000
, vol. 
20
 (pg. 
8303
-
8318
)
86
Hanamura
A.
Caceres
J. F.
Mayeda
A.
Franza
B. R.
Krainer
A. R.
Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors
RNA
1998
, vol. 
4
 (pg. 
430
-
444
)
87
Rooke
N.
Markovtsov
V.
Cagavi
E.
Black
D. L.
Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1
Mol. Cell Biol.
2003
, vol. 
23
 (pg. 
1874
-
1884
)
88
Olson
S.
Blanchette
M.
Park
J.
Savva
Y.
Yeo
G. W.
Yeakley
J. M.
Rio
D. C.
Graveley
B. R.
A regulator of Dscam mutually exclusive splicing fidelity
Nat. Struct. Mol. Biol.
2007
, vol. 
14
 (pg. 
1134
-
1140
)
89
Ramchatesingh
J.
Zahler
A. M.
Neugebauer
K. M.
Roth
M. B.
Cooper
T. A.
A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer
Mol. Cell Biol.
1995
, vol. 
15
 (pg. 
4898
-
4907
)
90
Jumaa
H.
Nielsen
P. J.
The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation
EMBO J.
1997
, vol. 
16
 (pg. 
5077
-
5085
)
91
Gallego
M. E.
Gattoni
R.
Stevenin
J.
Marie
J.
Expert-Bezancon
A.
The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the β-tropomyosin alternative exon 6A
EMBO J.
1997
, vol. 
16
 (pg. 
1772
-
1784
)
92
Solis
A. S.
Peng
R.
Crawford
J. B.
Phillips
J. A.
III
Patton
J. G.
Growth hormone deficiency and splicing fidelity: two serine/arginine-rich proteins, ASF/SF2 and SC35, act antagonistically
J. Biol. Chem.
2008
, vol. 
283
 (pg. 
23619
-
23626
)
93
Zhang
W. J.
Wu
J. Y.
Functional properties of p54, a novel SR protein active in constitutive and alternative splicing
Mol. Cell Biol.
1996
, vol. 
16
 (pg. 
5400
-
5408
)
94
Cowper
A. E.
Caceres
J. F.
Mayeda
A.
Screaton
G. R.
Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing
J. Biol. Chem.
2001
, vol. 
276
 (pg. 
48908
-
48914
)
95
Barnard
D. C.
Li
J.
Peng
R.
Patton
J. G.
Regulation of alternative splicing by SRrp86 through coactivation and repression of specific SR proteins
RNA
2002
, vol. 
8
 (pg. 
526
-
533
)
96
Tuerk
C.
Gold
L.
Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase
Science
1990
, vol. 
249
 (pg. 
505
-
510
)
97
Tacke
R.
Manley
J. L.
The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities
EMBO J.
1995
, vol. 
14
 (pg. 
3540
-
3551
)
98
Tacke
R.
Chen
Y.
Manley
J. L.
Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer
Proc. Natl. Acad. Sci. U.S.A.
1997
, vol. 
94
 (pg. 
1148
-
1153
)
99
Cavaloc
Y.
Bourgeois
C. F.
Kister
L.
Stevenin
J.
The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers
RNA
1999
, vol. 
5
 (pg. 
468
-
483
)
100
Coulter
L. R.
Landree
M. A.
Cooper
T. A.
Identification of a new class of exonic splicing enhancers by in vivo selection
Mol. Cell Biol.
1997
, vol. 
17
 (pg. 
2143
-
2150
)
101
Liu
H. X.
Chew
S. L.
Cartegni
L.
Zhang
M. Q.
Krainer
A. R.
Exonic splicing enhancer motif recognized by human SC35 under splicing conditions
Mol. Cell Biol.
2000
, vol. 
20
 (pg. 
1063
-
1071
)
102
Liu
H. X.
Zhang
M.
Krainer
A. R.
Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins
Genes Dev.
1998
, vol. 
12
 (pg. 
1998
-
2012
)
103
Cartegni
L.
Wang
J.
Zhu
Z.
Zhang
M. Q.
Krainer
A. R.
ESEfinder: a web resource to identify exonic splicing enhancers
Nucleic Acids Res.
2003
, vol. 
31
 (pg. 
3568
-
3571
)
104
Fairbrother
W. G.
Yeh
R. F.
Sharp
P. A.
Burge
C. B.
Predictive identification of exonic splicing enhancers in human genes
Science
2002
, vol. 
297
 (pg. 
1007
-
1013
)
105
Zhang
X. H.
Chasin
L. A.
Computational definition of sequence motifs governing constitutive exon splicing
Genes Dev.
2004
, vol. 
18
 (pg. 
1241
-
1250
)
106
Zhang
X. H.
Kangsamaksin
T.
Chao
M. S.
Banerjee
J. K.
Chasin
L. A.
Exon inclusion is dependent on predictable exonic splicing enhancers
Mol. Cell Biol.
2005
, vol. 
25
 (pg. 
7323
-
7332
)
107
Niranjanakumari
S.
Lasda
E.
Brazas
R.
Garcia-Blanco
M. A.
Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo
Methods
2002
, vol. 
26
 (pg. 
182
-
190
)
108
Mili
S.
Steitz
J. A.
Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses
RNA
2004
, vol. 
10
 (pg. 
1692
-
1694
)
109
Singer
B. S.
Shtatland
T.
Brown
D.
Gold
L.
Libraries for genomic SELEX
Nucleic Acids Res.
1997
, vol. 
25
 (pg. 
781
-
786
)
110
Lorenz
C.
von Pelchrzim
F.
Schroeder
R.
Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels
Nat. Protoc.
2006
, vol. 
1
 (pg. 
2204
-
2212
)
111
Ule
J.
Jensen
K. B.
Ruggiu
M.
Mele
A.
Ule
A.
Darnell
R. B.
CLIP identifies Nova-regulated RNA networks in the brain
Science
2003
, vol. 
302
 (pg. 
1212
-
1215
)
112
Ule
J.
Ule
A.
Spencer
J.
Williams
A.
Hu
J. S.
Cline
M.
Wang
H.
Clark
T.
Fraser
C.
Ruggiu
M.
Zeeberg
B. R.
Kane
D.
Weinstein
J. N.
Blume
J.
Darnell
R. B.
Nova regulates brain-specific splicing to shape the synapse
Nat. Genet.
2005
, vol. 
37
 (pg. 
844
-
852
)
113
Ule
J.
Stefani
G.
Mele
A.
Ruggiu
M.
Wang
X.
Taneri
B.
Gaasterland
T.
Blencowe
B. J.
Darnell
R. B.
An RNA map predicting Nova-dependent splicing regulation
Nature
2006
, vol. 
444
 (pg. 
580
-
586
)
114
Sanford
J. R.
Coutinho
P.
Hackett
J. A.
Wang
X.
Ranahan
W.
Caceres
J. F.
Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF, PLoS ONE
2008
, vol. 
3
 pg. 
e3369
 
115
Johnson
J. M.
Castle
J.
Garrett-Engele
P.
Kan
Z.
Loerch
P. M.
Armour
C. D.
Santos
R.
Schadt
E. E.
Stoughton
R.
Shoemaker
D. D.
Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays
Science
2003
, vol. 
302
 (pg. 
2141
-
2144
)
116
Pan
Q.
Shai
O.
Misquitta
C.
Zhang
W.
Saltzman
A. L.
Mohammad
N.
Babak
T.
Siu
H.
Hughes
T. R.
Morris
Q. D.
Frey
B. J.
Blencowe
B. J.
Revealing global regulatory features of Mammalian alternative splicing using a quantitative microarray platform
Mol. Cell
2004
, vol. 
16
 (pg. 
929
-
941
)
117
Blanchette
M.
Green
R. E.
Brenner
S. E.
Rio
D. C.
Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila
Genes Dev.
2005
, vol. 
19
 (pg. 
1306
-
1314
)
118
Shepard
P. J.
Hertel
K. J.
Conserved RNA secondary structures promote alternative splicing
RNA
2008
, vol. 
14
 (pg. 
1463
-
1469
)
119
Muro
A. F.
Caputi
M.
Pariyarath
R.
Pagani
F.
Buratti
E.
Baralle
F. E.
Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display
Mol. Cell Biol.
1999
, vol. 
19
 (pg. 
2657
-
2671
)
120
Buratti
E.
Muro
A. F.
Giombi
M.
Gherbassi
D.
Iaconcig
A.
Baralle
F. E.
RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon
Mol. Cell Biol.
2004
, vol. 
24
 (pg. 
1387
-
1400
)
121
Graveley
B. R.
Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures
Cell
2005
, vol. 
123
 (pg. 
65
-
73
)
122
Screaton
G. R.
Caceres
J. F.
Mayeda
A.
Bell
M. V.
Plebanski
M.
Jackson
D. G.
Bell
J. I.
Krainer
A. R.
Identification and characterization of three members of the human SR family of pre-mRNA splicing factors
EMBO J.
1995
, vol. 
14
 (pg. 
4336
-
4349
)
123
Wang
J.
Manley
J. L.
Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways
RNA
1995
, vol. 
1
 (pg. 
335
-
346
)
124
Wang
J.
Takagaki
Y.
Manley
J. L.
Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability
Genes Dev.
1996
, vol. 
10
 (pg. 
2588
-
2599
)
125
Ring
H. Z.
Lis
J. T.
The SR protein B52/SRp55 is essential for Drosophila development
Mol. Cell Biol.
1994
, vol. 
14
 (pg. 
7499
-
7506
)
126
Peng
X.
Mount
S. M.
Genetic enhancement of RNA-processing defects by a dominant mutation in B52, the Drosophila gene for an SR protein splicing factor
Mol. Cell Biol.
1995
, vol. 
15
 (pg. 
6273
-
6282
)
127
Hoffman
B. E.
Lis
J. T.
Pre-mRNA splicing by the essential Drosophila protein B52: tissue and target specificity
Mol. Cell Biol.
2000
, vol. 
20
 (pg. 
181
-
186
)
128
Kim
S.
Shi
H.
Lee
D. K.
Lis
J. T.
Specific SR protein-dependent splicing substrates identified through genomic SELEX
Nucleic Acids Res.
2003
, vol. 
31
 (pg. 
1955
-
1961
)
129
Rasheva
V. I.
Knight
D.
Bozko
P.
Marsh
K.
Frolov
M. V.
Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila
Mol. Cell Biol.
2006
, vol. 
26
 (pg. 
3468
-
3477
)
130
Fic
W.
Juge
F.
Soret
J.
Tazi
J.
eye development under the control of SRp55/B52-mediated alternative splicing of eyeless
PLoS ONE
2007
, vol. 
2
 pg. 
e253
 
131
Kawano
T.
Fujita
M.
Sakamoto
H.
Unique and redundant functions of SR proteins, a conserved family of splicing factors, in Caenorhabditis elegans development
Mech. Dev.
2000
, vol. 
95
 (pg. 
67
-
76
)
132
Longman
D.
Johnstone
I. L.
Caceres
J. F.
Functional characterization of SR and SR-related genes in Caenorhabditis elegans
EMBO J.
2000
, vol. 
19
 (pg. 
1625
-
1637
)
133
Longman
D.
McGarvey
T.
McCracken
S.
Johnstone
I. L.
Blencowe
B. J.
Caceres
J. F.
Multiple interactions between SRm160 and SR family proteins in enhancer- dependent splicing and development of C. elegans
Curr. Biol.
2001
, vol. 
11
 (pg. 
1923
-
1933
)
134
Moroy
T.
Heyd
F.
The impact of alternative splicing in vivo: mouse models show the way
RNA
2007
, vol. 
13
 (pg. 
1155
-
1171
)
135
Jumaa
H.
Wei
G.
Nielsen
P. J.
Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20 Curr
Biol.
1999
, vol. 
9
 (pg. 
899
-
902
)
136
Wang
H. Y.
Xu
X.
Ding
J. H.
Bermingham
J. R.
Jr
Fu
X. D.
SC35 plays a role in T cell development and alternative splicing of CD45
Mol. Cell
2001
, vol. 
7
 (pg. 
331
-
342
)
137
Ding
J. H.
Xu
X.
Yang
D.
Chu
P. H.
Dalton
N. D.
Ye
Z.
Yeakley
J. M.
Cheng
H.
Xiao
R. P.
Ross
J.
, et al. 
Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart
EMBO J.
2004
, vol. 
23
 (pg. 
885
-
896
)
138
Xu
X.
Yang
D.
Ding
J. H.
Wang
W.
Chu
P. H.
Dalton
N. D.
Wang
H. Y.
Bermingham
J. R.
Jr
Ye
Z.
Liu
F.
, et al. 
ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle
Cell
2005
, vol. 
120
 (pg. 
59
-
72
)
139
Huang
Y.
Steitz
J. A.
SRprises along a messenger's journey
Mol. Cell
2005
, vol. 
17
 (pg. 
613
-
615
)
140
Lamond
A. I.
Spector
D. L.
Nuclear speckles: a model for nuclear organelles
Nat. Rev. Mol. Cell Biol.
2003
, vol. 
4
 (pg. 
605
-
612
)
141
Caceres
J. F.
Screaton
G. R.
Krainer
A. R.
A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm
Genes Dev.
1998
, vol. 
12
 (pg. 
55
-
66
)
142
Dreyfuss
G.
Matunis
M. J.
Pinol-Roma
S.
Burd
C. G.
hnRNP proteins and the biogenesis of mRNA
Annu. Rev. Biochem.
1993
, vol. 
62
 (pg. 
289
-
321
)
143
Huang
Y.
Gattoni
R.
Stevenin
J.
Steitz
J. A.
SR splicing factors serve as adapter proteins for TAP-dependent mRNA export
Mol. Cell
2003
, vol. 
11
 (pg. 
837
-
843
)
144
Huang
Y.
Steitz
J. A.
Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA
Mol. Cell
2001
, vol. 
7
 (pg. 
899
-
905
)
145
Huang
Y.
Yario
T. A.
Steitz
J. A.
A molecular link between SR protein dephosphorylation and mRNA export
Proc. Natl. Acad. Sci. U.S.A.
2004
, vol. 
101
 (pg. 
9666
-
9670
)
146
Zhang
Z.
Krainer
A. R.
Involvement of SR proteins in mRNA surveillance
Mol. Cell
2004
, vol. 
16
 (pg. 
597
-
607
)
147
Sato
H.
Hosoda
N.
Maquat
L. E.
Efficiency of the pioneer round of translation affects the cellular site of nonsense-mediated mRNA decay
Mol. Cell
2008
, vol. 
29
 (pg. 
255
-
262
)
148
Karni
R.
de Stanchina
E.
Lowe
S. W.
Sinha
R.
Mu
D.
Krainer
A. R.
The gene encoding the splicing factor SF2/ASF is a proto-oncogene
Nat. Struct. Mol. Biol.
2007
, vol. 
14
 (pg. 
185
-
193
)
149
Sanford
J. R.
Gray
N. K.
Beckmann
K.
Caceres
J. F.
A novel role for shuttling SR proteins in mRNA translation
Genes Dev.
2004
, vol. 
18
 (pg. 
755
-
768
)
150
Michlewski
G.
Sanford
J. R.
Caceres
J. F.
The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1
Mol. Cell
2008
, vol. 
30
 (pg. 
179
-
189
)
151
Holz
M. K.
Ballif
B. A.
Gygi
S. P.
Blenis
J.
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
Cell
2005
, vol. 
123
 (pg. 
569
-
580
)
152
Bedard
K. M.
Daijogo
S.
Semler
B. L.
A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation
EMBO J.
2007
, vol. 
26
 (pg. 
459
-
467
)
153
Swartz
J. E.
Bor
Y. C.
Misawa
Y.
Rekosh
D.
Hammarskjold
M. L.
The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
19844
-
19853
)
154
Mermoud
J. E.
Cohen
P. T.
Lamond
A. I.
Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism
EMBO J.
1994
, vol. 
13
 (pg. 
5679
-
5688
)
155
Xiao
S. H.
Manley
J. L.
Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing
Genes Dev.
1997
, vol. 
11
 (pg. 
334
-
344
)
156
Tazi
J.
Kornstadt
U.
Rossi
F.
Jeanteur
P.
Cathala
G.
Brunel
C.
Luhrmann
R.
Thiophosphorylation of U1-70K protein inhibits pre-mRNA splicing
Nature
1993
, vol. 
363
 (pg. 
283
-
286
)
157
Cao
W.
Jamison
S. F.
Garcia-Blanco
M. A.
Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro
RNA
1997
, vol. 
3
 (pg. 
1456
-
1467
)
158
Gui
J. F.
Lane
W. S.
Fu
X. D.
A serine kinase regulates intracellular localization of splicing factors in the cell cycle
Nature
1994
, vol. 
369
 (pg. 
678
-
682
)
159
Wang
H. Y.
Lin
W.
Dyck
J. A.
Yeakley
J. M.
Songyang
Z.
Cantley
L. C.
Fu
X. D.
SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells
J. Cell Biol.
1998
, vol. 
140
 (pg. 
737
-
750
)
160
Colwill
K.
Pawson
T.
Andrews
B.
Prasad
J.
Manley
J. L.
Bell
J. C.
Duncan
P. I.
The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution
EMBO J.
1996
, vol. 
15
 (pg. 
265
-
275
)
161
Rossi
F.
Labourier
E.
Forne
T.
Divita
G.
Derancourt
J.
Riou
J. F.
Antoine
E.
Cathala
G.
Brunel
C.
Tazi
J.
Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I
Nature
1996
, vol. 
381
 (pg. 
80
-
82
)
162
Ngo
J. C.
Giang
K.
Chakrabarti
S.
Ma
C. T.
Huynh
N.
Hagopian
J. C.
Dorrestein
P. C.
Fu
X. D.
Adams
J. A.
Ghosh
G.
A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1
Mol. Cell
2008
, vol. 
29
 (pg. 
563
-
576
)
163
Ngo
J. C.
Chakrabarti
S.
Ding
J. H.
Velazquez-Dones
A.
Nolen
B.
Aubol
B. E.
Adams
J. A.
Fu
X. D.
Ghosh
G.
Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2
Mol. Cell
2005
, vol. 
20
 (pg. 
77
-
89
)
164
Ding
J. H.
Zhong
X. Y.
Hagopian
J. C.
Cruz
M. M.
Ghosh
G.
Feramisco
J.
Adams
J. A.
Fu
X. D.
Regulated cellular partitioning of SR protein-specific kinases in mammalian cells
Mol. Biol. Cell
2006
, vol. 
17
 (pg. 
876
-
885
)
165
Lin
S.
Xiao
R.
Sun
P.
Xu
X.
Fu
X. D.
Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation
Mol. Cell
2005
, vol. 
20
 (pg. 
413
-
425
)
166
Sanford
J. R.
Ellis
J. D.
Cazalla
D.
Caceres
J. F.
Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor
Proc. Natl. Acad. Sci. U.S.A.
2005
, vol. 
102
 (pg. 
15042
-
15047
)
167
Sanford
J. R.
Bruzik
J. P.
Developmental regulation of SR protein phosphorylation and activity
Genes Dev.
1999
, vol. 
13
 (pg. 
1513
-
1518
)
168
Lynch
K. W.
Regulation of alternative splicing by signal transduction pathways
Adv. Exp. Med. Biol.
2007
, vol. 
623
 (pg. 
161
-
174
)
169
Shin
C.
Feng
Y.
Manley
J. L.
Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock
Nature
2004
, vol. 
427
 (pg. 
553
-
558
)
170
Shi
Y.
Manley
J. L.
A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock
Mol. Cell
2007
, vol. 
28
 (pg. 
79
-
90
)
171
Patel
N. A.
Kaneko
S.
Apostolatos
H. S.
Bae
S. S.
Watson
J. E.
Davidowitz
K.
Chappell
D. S.
Birnbaum
M. J.
Cheng
J. Q.
Cooper
D. R.
Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CβII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40
J. Biol. Chem.
2005
, vol. 
280
 (pg. 
14302
-
14309
)
172
Blaustein
M.
Pelisch
F.
Coso
O. A.
Bissell
M. J.
Kornblihtt
A. R.
Srebrow
A.
Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase
J. Biol. Chem.
2004
, vol. 
279
 (pg. 
21029
-
21037
)
173
Blaustein
M.
Pelisch
F.
Tanos
T.
Munoz
M. J.
Wengier
D.
Quadrana
L.
Sanford
J. R.
Muschietti
J. P.
Kornblihtt
A. R.
Caceres
J. F.
, et al. 
Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT
Nat. Struct. Mol. Biol.
2005
, vol. 
12
 (pg. 
1037
-
1044
)
174
Shi
J.
Hu
Z.
Pabon
K.
Scotto
K. W.
Caffeine regulates alternative splicing in a subset of cancer-associated genes: a role for SC35
Mol. Cell Biol.
2008
, vol. 
28
 (pg. 
883
-
895
)
175
Lareau
L. F.
Inada
M.
Green
R. E.
Wengrod
J. C.
Brenner
S. E.
Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements
Nature
2007
, vol. 
446
 (pg. 
926
-
929
)
176
Ni
J. Z.
Grate
L.
Donohue
J. P.
Preston
C.
Nobida
N.
O'Brien
G.
Shiue
L.
Clark
T. A.
Blume
J. E.
Ares
M.
Jr
Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense- mediated decay
Genes Dev.
2007
, vol. 
21
 (pg. 
708
-
718
)
177
Krawczak
M.
Reiss
J.
Cooper
D. N.
The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences
Hum. Genet.
1992
, vol. 
90
 (pg. 
41
-
54
)
178
Valentine
C. R.
The association of nonsense codons with exon skipping
Mutat. Res.
1998
, vol. 
411
 (pg. 
87
-
117
)
179
Liu
H. X.
Cartegni
L.
Zhang
M. Q.
Krainer
A. R.
A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes
Nat. Genet.
2001
, vol. 
27
 (pg. 
55
-
58
)
180
Cartegni
L.
Chew
S. L.
Krainer
A. R.
Listening to silence and understanding nonsense: exonic mutations that affect splicing
Nat. Rev. Genet.
2002
, vol. 
3
 (pg. 
285
-
298
)
181
Fischer
D. C.
Noack
K.
Runnebaum
I. B.
Watermann
D. O.
Kieback
D. G.
Stamm
S.
Stickeler
E.
Expression of splicing factors in human ovarian cancer
Oncol. Rep.
2004
, vol. 
11
 (pg. 
1085
-
1090
)
182
Stickeler
E.
Kittrell
F.
Medina
D.
Berget
S. M.
Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis
Oncogene
1999
, vol. 
18
 (pg. 
3574
-
3582
)
183
Ghigna
C.
Moroni
M.
Porta
C.
Riva
S.
Biamonti
G.
Altered expression of heterogenous nuclear ribonucleoproteins and SR factors in human colon adenocarcinomas
Cancer Res.
1998
, vol. 
58
 (pg. 
5818
-
5824
)
184
Sinclair
C. S.
Rowley
M.
Naderi
A.
Couch
F. J.
The 17q23 amplicon and breast cancer
Breast Cancer Res. Treat.
2003
, vol. 
78
 (pg. 
313
-
322
)
185
Ghigna
C.
Giordano
S.
Shen
H.
Benvenuto
F.
Castiglioni
F.
Comoglio
P. M.
Green
M. R.
Riva
S.
Biamonti
G.
Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene
Mol. Cell
2005
, vol. 
20
 (pg. 
881
-
890
)
186
Stoltzfus
C. M.
Madsen
J. M.
Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing
Curr. HIV Res.
2006
, vol. 
4
 (pg. 
43
-
55
)
187
Exline
C. M.
Feng
Z.
Stoltzfus
C. M.
Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression
J. Virol.
2008
, vol. 
82
 (pg. 
3921
-
3931
)
188
Asang
C.
Hauber
I.
Schaal
H.
Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer
Nucleic Acids Res.
2008
, vol. 
36
 (pg. 
1450
-
1463
)
189
Dowling
D.
Nasr-Esfahani
S.
Tan
C. H.
O'Brien
K.
Howard
J. L.
Jans
D. A.
Purcell
D. F.
Stoltzfus
C. M.
Sonza
S.
HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages
Retrovirology
2008
, vol. 
5
 pg. 
18
 
190
Barbaro
G.
Scozzafava
A.
Mastrolorenzo
A.
Supuran
C. T.
Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome
Curr. Pharm. Des.
2005
, vol. 
11
 (pg. 
1805
-
1843
)
191
Soret
J.
Gabut
M.
Tazi
J.
SR proteins as potential targets for therapy
Prog. Mol. Subcell. Biol.
2006
, vol. 
44
 (pg. 
65
-
87
)
192
Soret
J.
Bakkour
N.
Maire
S.
Durand
S.
Zekri
L.
Gabut
M.
Fic
W.
Divita
G.
Rivalle
C.
Dauzonne
D.
, et al. 
Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors
Proc. Natl. Acad. Sci. U.S.A.
2005
, vol. 
102
 (pg. 
8764
-
8769
)
193
Bakkour
N.
Lin
Y. L.
Maire
S.
Ayadi
L.
Mahuteau-Betzer
F.
Nguyen
C. H.
Mettling
C.
Portales
P.
Grierson
D.
Chabot
B.
Jeanteur
P.
Branlant
C.
Corbeau
P.
Tazi
J.
Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance
PLoS Pathog.
2007
, vol. 
3
 (pg. 
1530
-
1539
)
194
Cartegni
L.
Krainer
A. R.
Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1
Nat. Genet.
2002
, vol. 
30
 (pg. 
377
-
384
)
195
Kashima
T.
Manley
J. L.
A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy
Nat. Genet.
2003
, vol. 
34
 (pg. 
460
-
463
)
196
Wirth
B.
Brichta
L.
Hahnen
E.
Spinal muscular atrophy: from gene to therapy
Semin. Pediatr. Neurol.
2006
, vol. 
13
 (pg. 
121
-
131
)
197
Skordis
L. A.
Dunckley
M. G.
Yue
B.
Eperon
I. C.
Muntoni
F.
Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts
Proc. Natl. Acad. Sci. U.S.A.
2003
, vol. 
100
 (pg. 
4114
-
4119
)
198
Marquis
J.
Meyer
K.
Angehrn
L.
Kampfer
S. S.
Rothen-Rutishauser
B.
Schumperli
D.
Spinal muscular atrophy: SMN2 pre-mRNA splicing corrected by a U7 snRNA derivative carrying a splicing enhancer sequence
Mol. Ther.
2007
, vol. 
15
 (pg. 
1479
-
1486
)
199
Cartegni
L.
Krainer
A. R.
Correction of disease-associated exon skipping by synthetic exon-specific activators
Nat. Struct. Biol.
2003
, vol. 
10
 (pg. 
120
-
125
)
200
Hua
Y.
Vickers
T. A.
Okunola
H. L.
Bennett
C. F.
Krainer
A. R.
Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice
Am. J. Hum. Genet.
2008
, vol. 
82
 (pg. 
834
-
848
)
201
Hua
Y.
Vickers
T. A.
Baker
B. F.
Bennett
C. F.
Krainer
A. R.
Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon
PLoS. Biol.
2007
, vol. 
5
 pg. 
e73
 
202
Baughan
T.
Shababi
M.
Coady
T. H.
Dickson
A. M.
Tullis
G. E.
Lorson
C. L.
Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector
Mol. Ther.
2006
, vol. 
14
 (pg. 
54
-
62
)
203
Neugebauer
K. M.
Merrill
J. T.
Wener
M. H.
Lahita
R. G.
Roth
M. B.
SR proteins are autoantigens in patients with systemic lupus erythematosus. Importance of phosphoepitopes
Arthritis Rheum.
2000
, vol. 
43
 (pg. 
1768
-
1778
)
204
Buratti
E.
Stuani
C.
De Prato
G.
Baralle
F. E.
SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer
Nucleic Acids Res.
2007
, vol. 
35
 (pg. 
4359
-
4368
)
205
Pagani
F.
Buratti
E.
Stuani
C.
Romano
M.
Zuccato
E.
Niksic
M.
Giglio
L.
Faraguna
D.
Baralle
F. E.
Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
21041
-
21047
)
206
Mine
M.
Brivet
M.
Touati
G.
Grabowski
P.
Abitbol
M.
Marsac
C.
Splicing error in E1α pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation
J. Biol. Chem.
2003
, vol. 
278
 (pg. 
11768
-
11772
)
207
Gabut
M.
Mine
M.
Marsac
C.
Brivet
M.
Tazi
J.
Soret
J.
The SR protein SC35 is responsible for aberrant splicing of the E1α pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis
Mol. Cell Biol.
2005
, vol. 
25
 (pg. 
3286
-
3294
)
208
Watanuki
T.
Funato
H.
Uchida
S.
Matsubara
T.
Kobayashi
A.
Wakabayashi
Y.
Otsuki
K.
Nishida
A.
Watanabe
Y.
Increased expression of splicing factor SRp20 mRNA in bipolar disorder patients
J. Affect. Disord.
2008
, vol. 
110
 (pg. 
62
-
69
)
209
Maniatis
T.
Reed
R.
An extensive network of coupling among gene expression machines
Nature
2002
, vol. 
416
 (pg. 
499
-
506
)
210
Tange
T. O.
Nott
A.
Moore
M. J.
The ever-increasing complexities of the exon junction complex
Curr. Opin. Cell Biol.
2004
, vol. 
16
 (pg. 
279
-
284
)
211
Schaal
T. D.
Maniatis
T.
Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences
Mol. Cell Biol.
1999
, vol. 
19
 (pg. 
1705
-
1719
)
212
Tian
H.
Kole
R.
Strong RNA splicing enhancers identified by a modified method of cycled selection interact with SR protein
J. Biol. Chem.
2001
, vol. 
276
 (pg. 
33833
-
33839
)
213
Shi
H.
Hoffman
B. E.
Lis
J. T.
A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52
Mol. Cell Biol.
1997
, vol. 
17
 (pg. 
2649
-
2657
)
214
Lou
H.
Neugebauer
K. M.
Gagel
R. F.
Berget
S. M.
Regulation of alternative polyadenylation by U1 snRNPs and SRp20
Mol. Cell Biol.
1998
, vol. 
18
 (pg. 
4977
-
4985
)
215
Lynch
K. W.
Maniatis
T.
Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer
Genes Dev.
1996
, vol. 
10
 (pg. 
2089
-
2101
)
216
Eldridge
A. G.
Li
Y.
Sharp
P. A.
Blencowe
B. J.
The SRm160/300 splicing coactivator is required for exon-enhancer function
Proc. Natl. Acad. Sci. U.S.A.
1999
, vol. 
96
 (pg. 
6125
-
6130
)
217
Simard
M. J.
Chabot
B.
SRp30c is a repressor of 3′ splice site utilization
Mol. Cell Biol.
2002
, vol. 
22
 (pg. 
4001
-
4010
)
218
Kennedy
C. F.
Kramer
A.
Berget
S. M.
A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point
Mol. Cell Biol.
1998
, vol. 
18
 (pg. 
5425
-
5434
)