Ischaemia–reperfusion (I–R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I–R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.

If the supply of oxygen to a normally aerobic tissue is restricted (hypoxia, often caused by ischaemia), and then is more or less rapidly restored (‘reperfusion’), that tissue may be damaged. This damage is variously known as ischaemia–reperfusion injury, hypoxia–reperfusion injury, or reoxygenation injury. It is widely observed acutely [1], for instance following an acute mycocardial infarction [2–4], stroke [5,6], in emergency medicine [7], and during the ex vivo incubation of organs as part of transplant surgery [8–11]. It is considered (see below) that the main mechanisms involve the production, especially during the reperfusion, of various partially reduced reactive oxygen species (ROS) [12,13], not least by an over-reduced mitochondrial respiratory chain that was formed during the hypoxic phase (see Figure 1 for a simplified representation of ischaemia–reperfusion injury (I–R I)). These initiate a variety of other processes such as inflammation that we discuss later.

Simplified representation of the initial stages of ischaemia–reperfusion injury (I–R I [7]).

Figure 1.
Simplified representation of the initial stages of ischaemia–reperfusion injury (I–R I [7]).

Created with BioRender (https://biorender.com/).

Figure 1.
Simplified representation of the initial stages of ischaemia–reperfusion injury (I–R I [7]).

Created with BioRender (https://biorender.com/).

Close modal

A considerable number of chronic disorders or syndromes seem to occur following the acute stages of an infection [14–16], and include rheumatoid arthritis, various forms of more classical chronic fatigue (idiopathic chronic fatigue ICF and myalgic encephalomyelitis/chronic fatigue syndrome ME/CFS), and, most recently, Long COVID [17–23]. They are characterised by a multiplicity of symptoms, that, while seemingly (but not) unrelated, also exhibit two particular features: (i) a variety of manifestations of exceptional levels of fatigue (e.g. [18,24–35] and see below) and (ii) episodic disability [29,36–39], i.e. periods of unwellness that are relatively benign interspersed with periods (‘relapses’ or ‘crashes’) characterised by acute, severe, and often debilitating symptoms. Another striking feature of these diseases is that they predominantly affect women [40–42].

By and large, these diseases (especially ME/CFS and Long COVID) have not been well managed [29,43] because their aetiologies have been uncertain and even their organic (rather than psychological) nature has been questioned. Some of the management practices, such as graded exercise therapy, have even been harmful [43], especially since post-exertional malaise (PEM) (a worsening of symptoms following exertion) is even a hallmark of such diseases [44]. Indeed, we consider (and argue) that periodic ischaemia–reperfusion injury is largely responsible for the relapsing observed.

Thus, the main purpose of this review is to bring together the evidence that a chief cause of such crashes or relapses, that also serves to contribute to the chronic nature of such diseases, is probably a kind of chronic in vivo hypoxia/reperfusion activity that seems to have been almost completely [45] unremarked. The recognition of this leads to a variety of promising therapeutic opportunities; in most cases, there is already evidence for their benefits. We take such evidence to be evidence for the mechanisms that we propose.

Depending on the precise scoring, some 10–30% or more of individuals infected with SARS-CoV-2 and exhibiting acute COVID go on to manifest Long COVID [46–54]. This said, Long COVID has over 200 different symptoms, a subset of which (identifiable as subtypes [55]) can occur in any individual [34,56–59], likely with some consequences that may not manifest for years [60,61] or even decades [62]. These include [19,26,27,30,50,56,63–71] breathlessness [72,73], fatigue [17,18,22,25,26,31,34,35,49,74], cardiovascular issues [61,75], chest pain [74], myalgia [17,22,24,25], cognitive dysfunction [26,63,64,74,76–79], innate and cell-mediated immune responses coupled to inflammatory cytokine production [80,81], a variety of coagulopathies [82,83] including fibrin amyloid microclots [84–89], and, in particular, postural tachycardia syndrome (PoTS) [25,26,90,91] and PEM [22,25,31,92].

The great majority of these also occur in both ME/CFS [18,19,43,93–96] (also likely most commonly a post-viral disease [16,19,97,98]) and in rheumatoid arthritis [14,23,99] (where bacterial infection, especially by Proteus spp., is strongly implicated [14,100–105]). To retain focus, we do not really discuss the many other chronic, inflammatory diseases for which similar phenomena may be observed (see e.g. [15,106]), though we would comment that ischaemia–reperfusion injury has been suggested to be significant in the vascular disease pre-eclampsia [107,108], that also exhibits many of the other hallmarks (necessarily for a more limited time) of these syndromes [109,110]. Indeed, aspects of COVID-19 bear many similarities to pre-eclampsia in pregnant women [111,112]. To this end, the likely ubiquity of an infectious origin for more or less all chronic inflammatory diseases [15,106] is exemplified by the recent recognition that multiple sclerosis originates with an Epstein–Barr virus (EBV) infection [113–115].

Gene expression levels can vary very widely between different tissues (e.g. [116,117]). Thus, although in acute COVID the SARS-2-CoV virions tend to be most accumulated where their receptors are most prevalent (as were the α and δ-variants in the lungs [118,119]), there is evidence for a wide distribution between tissues [118,120,121], including in Long COVID [19,77,122]. This can help to explain particular differences in symptomology; however, we consider that there are mechanisms (particularly amyloid microclot formation [85] and, as introduced here, regular ischaemia–reperfusion injury) that are also general enough to help to understand the unusual breadth of the pathology of Long COVID.

Given the complexity of the potential actors and symptoms, and the fact that in one sense everything is connected to everything else, often with complex feedback loops, the task of the systems biologist is to identify, and ultimately to quantify, the pathways and elements most strongly contributing to the phenomena of interest. This will initially take the form of qualitative network diagrams [123–126]. To this end, Figure 2 indicates some of the features that we consider likely to contribute to these chronic, inflammatory diseases, along with an attempt (Figure 3) to indicate some evident causal relationships.

Systems that are likely to be affected by, and contribute to, chronic, inflammatory diseases.

Figure 2.
Systems that are likely to be affected by, and contribute to, chronic, inflammatory diseases.

Created with BioRender (https://biorender.com/).

Figure 2.
Systems that are likely to be affected by, and contribute to, chronic, inflammatory diseases.

Created with BioRender (https://biorender.com/).

Close modal

Some causes and effects of inflammation.

Figure 3.
Some causes and effects of inflammation.

In many cases there is positive feedback in which A causes B and B causes A (e.g. inflammation ßà endotheliitis, inflammation ßà coagulopathies). Created with BioRender (https://biorender.com/).

Figure 3.
Some causes and effects of inflammation.

In many cases there is positive feedback in which A causes B and B causes A (e.g. inflammation ßà endotheliitis, inflammation ßà coagulopathies). Created with BioRender (https://biorender.com/).

Close modal

Many the following sections summarise the mechanistic evidence for these phenomena. Given the heterogeneity of symptoms alluded to above, it is clear that some pathways will be more significant than others in particular individuals, so this is necessarily to be seen as a high-level view. In particular, to understand how one state of relatively benign conditions can morph into another of much greater severity, it is to be recognised that normally an internal or external trigger of some kind is necessary. This could be hormonal (e.g. the female menstrual cycle) or more or less any kind of stress or trauma. Our focus here is on the involvement of a kind of chronic ischaemia–reperfusion injury in these processes, and the role of fibrin amyloid microclots therein.

Under normal circumstances, the reduction in dioxygen by the mitochondrial respiratory chain is a four-electron reduction (leading to water), occurring at cytochrome c oxidase. If the respiratory chain is over-reduced, however, as a result of hypoxia or the ischaemia that causes it, O2 when readmitted (‘reperfusion’) can undergo a two-electron reduction at the level of cytochrome b (complex III) forming peroxide, or a one-electron reduction at complex I forming superoxide O2. A variety of other oxygen-reducing enzymes can also lead directly to the production of such ‘reduced’ forms of dioxygen in vivo (e.g. [1,127–129]), with H2O2 from xanthine oxidase being especially implicated in ischaemia/reperfusion injury (e.g. [128,130–135]).

Superoxide dismutase [136] can serve to equilibrate superoxide and peroxide:
1
As reviewed in detail previously [106], although classed as ‘reactive oxygen species’, neither peroxide nor superoxide are normally excessively toxic at low concentrations (indeed they can be used as signalling molecules); what does cause major toxicity is their presence at higher levels and in addition the reaction of hydrogen peroxide with (free or poorly liganded) Fe(II) in the Fenton reaction [137], leading to the very reactive and damaging hydroxyl radical (OH)
2
Superoxide can also react with ferric iron in the Haber–Weiss reaction [138,139] to produce Fe(II) again, thereby effecting redox cycling:
3
It is to be stressed that the combination of these two reactions means that unliganded iron can act catalytically to produce hydroxyl radicals.

Hydroxyl radicals are exceptionally reactive, and react within nanoseconds with anything that is nearby. Thus it is they that are especially responsible for all the trouble connected with oxidative stress (Figure 4).

Some of the chemical reactions contributing to oxidative stress and disease.

Figure 4.
Some of the chemical reactions contributing to oxidative stress and disease.

Created with BioRender (https://biorender.com/).

Figure 4.
Some of the chemical reactions contributing to oxidative stress and disease.

Created with BioRender (https://biorender.com/).

Close modal

Note that ascorbate can replace O2 within the cell for reducing the Fe(III) to Fe(II) [140]. Thus, although ascorbate is ‘reducing’ and an ‘antioxidant’, its reaction with O2, especially when catalysed by Fe(II), produces superoxide and thence OH radicals that may be pro-oxidant [141]. Indeed, a variety of clinical trials using ascorbate in diseases considered to be accompanied by oxidative stress have found that it is actually less good than was the control/placebo in terms of all-cause mortality [142,143].

This was discussed in much more detail previously [106] (see also [15]), so only a brief summary is given here. Specifically, while iron is familiar as normally existing mainly in Fe(II) or Fe(III) states, this describes only part of the picture, since the Fe atom contains six potentially ligandable sites (two polar, four equatorial) that also affect its reactivity, and only when all six sites are occupied (liganded) is its reactivity controlled. Liganding say four sites actually increases its reactivity, and for instance the reduction by ascorbate of Fe–EDTA complexes (that ligand only the equatorial sites) is in fact a potent means of producing hydroxyl radicals in the laboratory [144–147]. Thus it is vital to ensure that free iron, and especially poorly liganded iron, is absent [148]. Note, in this context, that cell death is accompanied by the release of ferritin, and that this ferritin (which should not normally be in plasma at all) liberates free iron when it enters the bloodstream [149].

Although textbooks of microbiology focus on the kinetics and behaviour of microbes when they are (or have recently been) actively growing, this state is not at all the norm in nature. If an organism can grow it will do so, but if it lacks a necessary nutrient or signalling molecule it cannot (by definition). Unsurprisingly, evolution long ago selected against organisms that simply die when unable to grow, and instead selected for starvation survival [150–153] that required that they entered a state of dormancy [154,155], from which they must in time become resuscitable [156–159]. In clinical microbiology (where large segments of the human population harbour dormant forms of Mycobacterium tuberculosis [160,161] and/or Helicobacter pylori [162,163] without manifesting overt infection), such dormant forms are often referred to as ‘persisters’ [164–174].

Dormant bacteria represent a conundrum for classical bacteriology, since they do not obey the classical Koch's postulates that classically allow one to state that organism X causes disease Y [175–182]; specifically, they do not necessarily adopt replicating forms, that might be assessed as axenic colonies on petri dishes. Notwithstanding claims of reagent contamination, the presence of dormant (non-replicating) bacteria also underpins the existence of (often resuscitable) microbial cells in blood [183–193] and tissues (e.g. [109,110,194]) that are normally considered to be necessarily sterile, where they may also be detected by molecular methods or using imaging techniques. In general terms, the invasion of host cells by microbes (‘intracellular pathogens’) that are known to lie in a dormant or quiescent state and reactivate at later times is actually a commonplace (e.g. [195–222]), so should not, in fact, be perceived as ‘controversial’ at all (Figure 5).

Microbial states and their viability and culturability, adapted from [15].

Figure 5.
Microbial states and their viability and culturability, adapted from [15].

Created with BioRender (https://biorender.com/).

Figure 5.
Microbial states and their viability and culturability, adapted from [15].

Created with BioRender (https://biorender.com/).

Close modal

Viruses, especially herpes viruses, but also enteroviruses [223], can also remain latent for years [224–226], a well-known example being the activation of herpes zoster (manifesting as shingles) decades after a typically childhood infection with chickenpox [227]. Their reactivation has also been strongly implicated in Alzheimer's disease [228–231]. The prevalence of latent herpesviruses such as cytomegalovirus may be as great as 90% [232,233]. Most pertinently, there are strong indications for a role of periodic viral (and/or bacterial) reactivation in both ME/CFS [234] and Long COVID [16,19,22,43,47,220,235–239].

A chief means by which viruses are suppressed, or maintained in a latent state, involves the interferon system (e.g. [240–246]). For present purposes, it is not necessary to go into all the molecular details; sufficient here is to recognise that infection with SARS-CoV-2 (as with certain other viruses [242,247–249]) can effectively lower the normal interferon responses [250], and it is this that effectively unleashes existing latent viruses. Vaccination can sometimes elicit a similar effect [251–253].

With the possible exception of Borrelia burgdorferi (the causative agent of Lyme disease) [254], all microbes need a source of iron. Normally, within human hosts, free iron is strictly regulated and is not available to assist the growth of pathogens [15,255–263]. This is (in part) why typical pathogens cannot replicate in vivo, why higher iron levels correlate with infection [15], and why genes encoding iron uptake mechanisms are virulence genes [264,265]. Thus, any kind of trauma that leads to cell death can liberate free iron [15,266], which then initiate replication (and the potential shedding of inflammagens such as lipopolysaccharide (LPS) [15,267] and lipoteichoic acid [268]).

It is by now well established that endotheliopathies, commonly measured using flow-mediated dilation [269,270], are of great significance in the pathological response of hosts to SARS-CoV-2 infection [271–284]. They are initially caused by the viral infection, but likely both lead to and are caused by the coagulopathies and strong inflammatory responses that characterise the disease.

The term coagulopathies is used to describe any kind of dysregulation of the blood coagulation system. Coagulopathies [82,285–302] are a hallmark of both acute COVID [82,84,86,303–319] and Long COVID [88,89,320], and spike protein may be activated by clotting factors [321]. Acute COVID-19 is associated with both a hypercoagulable state and with bleeding; the resolution of the apparent paradox is temporal [82] since the hypercoagulation can use up elements such as von Willebrand factor (VWF) that are then insufficient for normal coagulation to occur. Hypercoagulation can be caused by any number of traumas or shocks to the system, from the more obviously acute kind of trauma [322–324], to the presence of molecules such as free iron [325–330], bacterial LPS [267,268,331–333], and lipoteichoic acid [268], or, most pertinently, the S1 spike protein of SARS-CoV-2 [84]. Coagulopathies are also a feature of rheumatoid arthritis [14,334–337] and indeed all kinds of inflammatory diseases [326,338–345], including of course COVID-19 [346–349] and ME/CFS [350–352]. However, although these links are well established, there is an important twist that makes the kind of coagulation we are talking about anomalous because it leads to fibrin amyloid-containing clots that are more resistant than usual to fibrinolysis.

Since we are not normally talking about overt infection here, in which large numbers of proliferating organisms overwhelm the host and create sepsis [353], we need a mechanism (or set of mechanisms) by which more-or-less tiny amounts of viral or bacterial product can amplify their effects. In this case, we believe that the clotting of blood into an anomalous, amyloid-type form, is a major contributor [85]. The terminal stages of blood clotting involve the self-organised polymerisation of fibrinogen (a protein of dimensions ca 5 × 45 nm) into fibrin fibrils of great length, and diameters of say 50–100 nm. What we discovered was that highly substoichiometric amounts of the Gram-negative bacterial cell wall component LPS , viz 1 molecule LPS per 100 000 000 fibrinogen molecules, could induce the clotting to be into a thermodynamically more stable, protease-resistant amyloid form [354–356]. This could also be effected by the Gram-positive equivalent, lipoteichoic acid [268], and, importantly for present purposes, by the spike protein of SARS-CoV-2 [84,85,87–89,306,357]. (We have not yet tested surface antigens from other viruses.) Because the conversion of normal forms of proteins to their amyloid equivalents, with no change in primary sequence, is often triggered by the amyloid form itself, much as with prions [355,358–361], it is unsurprising that there is cross-reactivity between amyloid types [362–365], and amyloid deposits of various kinds are also a hallmark of SARS-CoV-2 in COVID-19 [85,87,89,306,366–368], as well as with other viruses [369] and diseases [364]. One feature of the amyloid form is that by representing a conformation different from that of normal fibrin it necessarily displays novel epitopes, which can of course select for the production of autoantibodies; the fibrinaloid clots also trap a variety of other molecules, including plasmin-inhibiting agents [88] that mechanistically may contribute to their stability. However, probably the most important consequence of the resistance of these fibrin amyloid or ‘fibrinaloid’ [85] microclots to fibrinolysis is that they are able to pass into microcapillaries and block them up [370]. Such fibrinaloid microclots have now recently been observed in the plasma of ME/CFS, at levels some 10-fold those of healthy controls [352].

We also note that in vitro studies have shown that various other molecules can induce fibrin amyloid formation (referred to in our early literature as ‘dense matted deposits’); these include oestrogen [371] (which we consider also reflects the prevalence of these diseases in women [17,40,72] and variations in the severity of Long COVID during the female monthly cycle) and unliganded iron [326,330,372,373]. In contrast, magnesium ions are protective against fibrin amyloid microclotting [374]. We recognise, however, that men also produce oestrogens, so it is not a straightforward correlation, and many elements might underlie the significant bias towards women in these and other chronic, inflammatory diseases.

Tissue hypoxia can be caused by a variety of mechanisms, including poor O2 uptake in the first place or poor exchange with tissues. Similarly, mitochondrial respiration, whose control is distributed across many steps [375], may also be limited by a variety of causes, including the number of mitochondria and, of course, the actual availability of O2. To rehearse, arteries take O2-poor blood from the heart to the lungs where it is oxygenated, capillaries distribute it throughout tissues, and veins return the less-oxygenated blood to the heart (Figure 6). Nowadays the venous blood saturation is measured via a central venous catheter in the superior vena cava via the jugular of the subclavian vein, rather than in the pulmonary artery as previously [376]. It reflects both O2 transport to the tissues and usage by them [377], so while a low value is indicative of problems a normal value may not entirely reflect them [376]. Specifically, the evidence that in many of these diseases tissue hypoxia is a major cause of problems due to the capillaries not doing their job properly comes from the measurement of central or mixed venous (vs arterial O2) saturation [378,379]. In one study [378], central venous oxygen saturation (ScvO2) was 66% for healthy controls, 33% for acute COVID-19 survivors, and 18% for those who died from COVID-19. We note that conventional fingertip-type pulse oximeters, while reasonably accurate, mostly estimate arterial O2 levels [380], so would not necessarily pick up this kind of phenomenon; indeed this may account for the discordance [381,382] between pulse oximetry and arterial blood gas measurements. Cerebral oximetry [383] may provide a truer assessment if non-invasive measures are desired.

Simplified diagram of oxygen exchange, showing arteries (red) and veins (blue) linked by capillaries.

Figure 6.
Simplified diagram of oxygen exchange, showing arteries (red) and veins (blue) linked by capillaries.

Created with BioRender (https://biorender.com/).

Figure 6.
Simplified diagram of oxygen exchange, showing arteries (red) and veins (blue) linked by capillaries.

Created with BioRender (https://biorender.com/).

Close modal

One typical consequence of a blockage of a flexible pipe is that it swells. While it is not so easy to detect this, one organ where this is indeed visible is the eye. Consistent with capillary blockage, the diameters of blood vessels in the eye increase during COVID-19 [384–386]. Specifically, the likelihood of retinal microvasculopathy in subjects with COVID-19 was massively higher compared with that of controls (with an odds ratio and 95% confidence interval of 8.86 and 2.54–27.53, respectively [387]). In some cases, even ocular vein thrombosis has been observed [388].

If — as argued here — capillary blockage induced by fibrin amyloid microclots is important, especially as output demand is increased, it is reasonable that heart-rate variability might be increased in individuals suffering from Long COVID. This very much turns out to be the case [389–391], and is presumably related to postural orthostatic tachycardia syndrome (POTS) [392], another common symptom of Long COVID [21,90,393–395] with likely a similar cause. Specifically, as well as more complex physiological contributions, low O2 is a standard signal (as occurs during exercise) for the heart to beat faster (e.g. [396]); in the cases of interest here, we simply posit that this occurs at far lower levels of exercise effort because of the impaired ability to deliver O2 to tissues.

Most capillaries (depending on the individual under study [397]) are just 5–10 μm in diameter [398–406], which means that erythrocytes, with a discoid shape of 6–8 μm diameter × 2–2.5 μm [407], largely pass through them in single file (and their viscosity is here at a minimum [408]). Others are more like 15–50 μm diameter [409,410]. (There is thus a size discrepancy between the diameter of the white blood cells (6–8 μm or more) and that of the smallest capillaries (∼5.5 μm) and this size discrepancy forces the white blood cells, to deform in order to transit the capillary bed [411].) The transition into the tissue over the blood vessel walls will occur in the response to a biologically harmful stimulus (e.g. inflammation or infection) [412]. This white blood cell migration process is called transendothelial migration (TEM) or diapedesis. The fibrin amyloid microclots that we discovered are commonly 5 to even 200 μm in diameter, so it is not surprising that they can block up capillaries. See Figure 7 for representative examples of microclots in healthy participants (exposed to neither SARS-CoV-2 nor vaccine), those found in acute COVID-19 and in Long COVID. Also, note the % area distribution of microclots in acute COVID (data published in [87]). In addition, the erythrocytes themselves lose deformability in these kinds of disease [413]. Improved imaging methods coupled to advanced computer vision algorithms for assessing such capillary diameters (e.g. [398,399,409,414–421]) and their relation to blood flow represent important areas of research.

Figure 7.

(A) % area distribution of microclots in plasma from participants with acute COVID-19 (taken from raw data as in [87]). (B) Representative micrograph of microclots in plasma from a healthy individual. (C,D) Representative micrographs of microclots in plasma from acute COVID-19 participants (taken from raw data as in [87]). (E) Representative micrograph of microclots in plasma from participants with Long COVID (taken from raw data in [422]).

Figure 7.

(A) % area distribution of microclots in plasma from participants with acute COVID-19 (taken from raw data as in [87]). (B) Representative micrograph of microclots in plasma from a healthy individual. (C,D) Representative micrographs of microclots in plasma from acute COVID-19 participants (taken from raw data as in [87]). (E) Representative micrograph of microclots in plasma from participants with Long COVID (taken from raw data in [422]).

Close modal

Two other major points pertain to this question about the relationship between the size of capillaries and the likelihood of insoluble circulating material clogging them: the first is that if microclots of whatever composition are ‘already’ trapped in capillaries for a greater or lesser time they will not be observable in standard venous plasma samples, and so these measurements may underestimate the problem. The second is that this general mechanism of capillary blockage is likely true for other kinds of debris including those from endothelial cell damage; to this end, it is worth recognising that the presence of extracellular vesicles is part of many chronic diseases (e.g. [423–427]), including rheumatoid arthritis [428–433]. In particular, extracellular vesicles are seen as a highly discriminating accompaniment to ME/CFS [434], and are being observed in both acute [435] and Long COVID-19 [436] patients.

The size, shape, and deformability of erythrocytes contributes strongly to their function, and there is evidence that these too are abnormal in the diseases of present interest, viz rheumatoid arthritis, ME/CFS, acute and Long COVID. The extent to which these are caused via fibrin amyloid microclots or by other means (such as reaction with ROSs [437,438]) is unknown, but this is also likely to contribute to the oxidative stress observed. In particular, RBCs from patients with ME/CFS were significantly non-discocytic [439] and stiffer [413] than those from healthy controls. Differences are also found for erythrocyte sedimentation rates (ESR) [413,440] (as it was in the case of delayed cerebral ischaemia following subarachnoid haemorrhage [441]) and also for the easily measured red cell distribution width (RDW) [442]. ESR values are changed in Long COVID [443], while RDW is raised substantially (and increasingly with severity) in acute COVID [444–448]. We are not aware of studies of RDW and Long COVID, but the ease of measurement of this variable implies that much more use might be made of it.

It was also found that in acute COVID-19 infection, complement deposition on erythrocytes occurs [449]. Erythrocytes have complement receptor 1 (CR1) (also known as C3b/C4b receptor or CD35) on their membranes and this binds complement activation products C3b and iC3b [449] and C4d [450]. The complement system promotes clearance of pathogens but pathological complement activation may cause microvascular thrombosis. In COVID-19 ICU patients, a reduced CR1 erythrocyte density was observed. Furthermore, deposits of C4 fragments on erythrocytes and virus spikes or C3 on erythrocytes among COVID-19 patients may be of significance to the clearance of immune complex or complement fragment-coated cell debris during COVID-19 infection [450] (see Figure 8). All of these aspects can contribute to impaired blood flow and hence lowered tissue oxygenation.

Immune complex formation on erythrocytes during COVID-19 and Long COVID: a hypothesis.

Figure 8.
Immune complex formation on erythrocytes during COVID-19 and Long COVID: a hypothesis.

Created with BioRender (https://biorender.com/).

Figure 8.
Immune complex formation on erythrocytes during COVID-19 and Long COVID: a hypothesis.

Created with BioRender (https://biorender.com/).

Close modal

An extreme endpoint of oxidative stress-inducing erythrocyte stiffness and altered morphology is eryptosis [451–455], in which erythrocytes undergo a specific form of programmed cell death. However, since it can also be induced by a variety of drugs sometimes used to treat the relevant diseases (e.g. [456]), it may not be the best biomarker for diagnosing them precisely. Erythrocyte pathology is nonetheless a clear indicator of problems with microcirculation [453,457–459], and as such speaks clearly to our proposals that an inadequate microcirculation, leading to I–R injury, lies at the heart of these diseases.

While amyloid microclots in capillaries have been our focus, we should recognise that anything disposing to their formation might, statistically, tend to lead to the formation of larger clots. When the blockage by such a clot of a larger blood vessel such as a vein is effectively complete, one consequence is a venous thromboembolism (VTE), including pulmonary embolism (PE) and deep vein thrombosis (DVT). It is, therefore, worth enquiring as to whether the likelihood of these is raised as part of the diseases we are considering. The answer is that individuals with rheumatoid arthritis [460–467] and acute [287,468–479] and Long COVID [370,480,481] are indeed significantly more prone to such VTEs. The extent to which these thrombi are amyloid in character seems not to have been investigated, and there is also an intriguing link with MAST cell contents [482]. Here, we should also mention the prevalence of microthrombi and VTEs as part of sepsis (e.g. [353,483–485]), and the similarities between some of the symptoms observed in Long COVID or ME/CFS and what is coming to be recognised [486–489] as post-sepsis syndrome. These events provide further mechanistic evidence for the kinds of microcapillary blockage we believe to be caused by fibrinaloid microclots.

An aneurysm is a bulge in a blood vessel caused by a weakness in the blood vessel wall, commonly where it branches. Clearly, the blockage of a blood vessel by a microclot is likely to exert pressure on the vessel's walls, potentially weakening it, and so it is reasonable that aneurysms might be expected to accompany diseases involving microclots. This turns out to be the case in rheumatoid arthritis [490], acute COVID [491,492] (which bears similarities to Kawasaki disease [493]) and Long COVID [17]. The association with ME/chronic fatigue syndrome is seemingly weaker, and is usually seen as an association of fatigue, for example, driven by a subarachnoid haemorrhage [494,495].

Chilblains (pernio) commonly occur when the extremities get cold (restricting blood flow — ischaemia) followed by a period of rewarming (with reperfusion) leading to what might be seen as almost a classical and observable form of ischaemia–reperfusion injury. An unusual and striking feature that has been observed in both acute [496–502] and Long COVID [503–505] is just such a set of ‘chilblain-like lesions’ commonly known as ‘COVID toes’. They seem to reflect thromboembolic events, as well as a strong interferon response [506], and may represent (and certainly provide evidence for) one of the most visible sequelae (both macroscopically and via capillaroscopy [507–509]) of the kinds of ischaemia–reperfusion injury that we are positing here.

There is no doubt that hypoxia leading to ROS is the cause of ‘oxidative stress’ [510]. Hypoxia can have a variety of causes [511], and was of course one of the chief hallmarks of early variants of SARS-CoV-2 in acute COVID-19 [370,512–521], and it is reasonable that this is in part due to impaired capillary flow [370,522]. It can only be modelled if perfusion defects are included [523]. It is similarly a characteristic of Long COVID [17] and also, perhaps less well known, of rheumatoid arthritis [524]. Rheumatoid arthritis is also correlated with ischaemia as judged by a comorbidity with ischaemic heart disease [525], and indeed with VTE [461] and anomalous amyloid clotting [14,336,526]. Many positron emission tomography (PET) probes for detecting hypoxia in vivo do exist [527], and of course for research purposes one may use suitable optical probes [528] or the assessment of gene expression profiles as modulated by the transcription factor hypoxia-inducible factor (HIF-1) [529–531]. Such evidence for hypoxia is an important part of the narrative we bring together here.

Oxidative stress refers to an imbalance between the rate of production of reactive oxygen and nitrogen species (many of which are free radicals) and their elimination via antioxidants (e.g. [106,532–545]). As discussed above, any ischaemia or hypoxia followed by a return to normoxia runs the risk of ischaemia–reperfusion injury, since ROSs are the inevitable consequence. This manifests as a combination of oxidative stress, inflammation, and (synonymously) inflammatory cytokine production. This is almost so well known that it needs no rehearsal, so we merely give a few reviews as they pertain to rheumatoid arthritis [14], to ME/CFS [16,18,19,29,43,44,97,546–548], and to Long COVID [17,19,25,27]. For us, the key question is: how is this most obviously manifest in something relatively easily measurable (that thus provides evidence for them)?

If the supply of O2 to tissues is inadequate, cells must rely on non-respiratory reactions for their ATP formation, meaning that lactate is likely to accumulate. To this end, elevated lactate accumulation has indeed been observed in rheumatoid arthritis [549–551], in ME/CFS [552–557], and in acute [558–561] and long [562] COVID.

As rehearsed above, and in much more detail previously [15,106], while peroxide and superoxide are intermediates, and at high levels are cytotoxic, it is also the hydroxyl radical that causes many or most of the manifestations of oxidative stress and, in particular, of ischaemia–reperfusion injury. Because it is so reactive, it is not observable directly; however, the products of the effective reaction of ROSs with proteins (nitrotyrosine [563–567]), lipids (malondialdehyde [568,569]), and DNA (8-oxoguanine [570–574]) are. Consequently, if we wish to know that I–R injury is a contributor to the kinds of syndromes we are discussing here, we ‘simply’ need to check whether they manifest these oxidative biomarkers. 8-isoprostane is another, and it (and the related 15-isoprostane [575]) is raised in rheumatoid arthritis [576,577], ME/CFS [546], and COVID-19 [578–581]. Malondialdehyde and related compounds from lipid peroxidation are also easily measured in the ‘thiobarbituric acid reactive substances’ (TBARS) assay. Note, however, that being ‘endpoint assays’ they can measure determinands that can accumulate, but since the degradation rate of such molecules is normally unknown they cannot alone be used to determine the recency of any oxidative stress.

This said, there is plenty of evidence for the presence of nitrotyrosine in acute COVID [582,583], rheumatoid arthritis [584–587], and ME/CFS [588]. It does not yet seem to have been looked for in Long COVID but has been anticipated [583]. TBARS levels are also raised in rheumatoid arthritis [589–591], acute COVID [580], ME/CFS [592–595], and idiopathic chronic fatigue [94], and are similarly anticipated in Long COVID [547]. These measurements provide powerful evidence for the role of ischaemia–reperfusion phenomena in ME/CFS and Long COVID.

‘Fatigue’ in syndromes such as ME/CFS and Long COVID is commonly used to refer to an inability at a given moment to perform what would normally be seen as simple and very light mechanical, exercise or even cognitive tasks. In contrast, PEM refers to a state that follows such activities, commonly 24–48 h later, in which many of the symptoms of ME/CFS are exacerbated, and may be accompanied by burning sensations. Such events are often referred to as ‘crashes’. According to the ideas developed here, PEM is precisely a consequence of ischaemia–reperfusion injury, because the kinetics of cell death are such that this does not happen instantaneously but follow the flood of ROS contingent on the reperfusion events.

There is a certain circularity in the definition of inflammation, since inflammatory cytokines (such as IL-1β, IL-6, and TNF-α) are those that rise during inflammation, while inflammation is decreed when inflammatory cytokines are raised. Many are controlled by the transcription factors NF-κB [596] and Nrf2 [597,598], both of which are sensitive to redox state/oxidative stress [599–606], thereby providing a straightforward link between hypoxia, oxidative stress, and inflammation [607–609]. However, most measurements of these transcription factors are performed on ‘static’ samples, while it is their oscillatory nature that controls gene expression [610–614]. Consequently, beyond the qualitative statement of a linkage between these transcription factors and redox state (i.e. oxidative stress) the interpretation of most available data is not straightforward. What is also well established, however (e.g. [9,615–620]), is that inflammation is absolutely a consequence of ischaemia–reperfusion injury and ROS production, and vice versa, providing a ‘vicious cycle’.

Another mechanism mediating hyperinflammation is mast cell activation [621]. It occurs during acute COVID [622–624], and the symptoms [625] of those with known mast cell activation syndrome significantly mirror those of individuals with Long COVID [626,627]. The elevation of IL-6 levels, as well as proteases such as carboxypeptidase A3 and tryptase, is a hallmark of this and these are also observed in PASC patients [628]. Importantly for the present focus, mast cells are also activated during (and exacerbate) ischaemia–reperfusion injury [629–634], and the inhibition of mast cell degranulation [634] might consequently be of benefit in Long COVID. Indeed, these findings are consistent with the known beneficial effects of antihistamines in PASC [80] (see Figure 9).

Mast cell activation during COVID-19 and the resulting inflammation and coagulation pathology via mast cell degranulation.

Figure 9.
Mast cell activation during COVID-19 and the resulting inflammation and coagulation pathology via mast cell degranulation.

SARS-CoV-2 can activate mast cells through TLR(3) to release proinflammatory mediators. TLR, Toll-like receptor; FcεRI, high affinity IgE receptor; FcγR, IgG receptor; PAF, platelet-activating factor; MHC, major histocompatibility complex. Adapted from [635–637]. Created with BioRender (https://biorender.com/).

Figure 9.
Mast cell activation during COVID-19 and the resulting inflammation and coagulation pathology via mast cell degranulation.

SARS-CoV-2 can activate mast cells through TLR(3) to release proinflammatory mediators. TLR, Toll-like receptor; FcεRI, high affinity IgE receptor; FcγR, IgG receptor; PAF, platelet-activating factor; MHC, major histocompatibility complex. Adapted from [635–637]. Created with BioRender (https://biorender.com/).

Close modal

Platelet hyperactivation is one of the observables of both acute [638,639] and Long COVID [89], and one of its causes can certainly be oxidative stress [640], as well as circulating inflammatory molecules that may trigger platelet hyperactivation, spreading, and significant platelet clumping [86,301]. It is also part of ME/CFS [641]. Platelets have numerous receptors on their membranes that may interact with circulating inflammatory molecules, including viral and bacterial inflammagens [82,642–647]. In addition, platelets and their membrane receptors may also interact with each other, with endothelial cells and with other immune cells, forming platelet complexes. These interactions not only drive pathological clotting, but can also perpetuate endothelial damage and immunothrombosis [648,649], not only in COVID-19 as Long COVID, but also in all inflammatory diseases [647,650–660]. P-selectin is a well-known inflammatory molecule that may be found inside the granules of healthy platelets, on the membrane of the activated platelet where it acts as a binding receptor, or in circulation, as a soluble inflammatory molecule [82,301,646,661,662], Levels were raised in both participants in a small study [663]. Figure 10 shows selected platelet receptors and Figure 11 examples of platelet hyperactivation in individuals with Long COVID. Platelets are well-known for their storage of serotonin [664] and platelet factor 4 (PF4) and serotonin are stored in α- and δ-granules [665]. Circulating immune complexes may also activate platelets via receptor–receptor binding followed by the release of serotonin from platelet granules [665]. A subpopulation of platelets (the COAT-platelets) activated with collagen and thrombin express functional α-granule factor V. These COAT-platelets can bind fibrinogen, VWF, thrombospondin, fibronectin, and α2-antiplasmin [666]. In addition, COAT-platelets use serotonin conjugation to bind pro-coagulant proteins on their cell surface through a serotonin receptor [666]. As platelet serotonin is the main source of serotonin in the blood, if a significant proportion of the circulating platelet population is hyperactivated, these platelets will shed their serotonin content and it will, in addition, provide a pro-coagulant surface, allowing these platelets to form platelet complexes, bind to fibrin(ogen), and also damaged endothelial cells (see Figure 10). Platelet hyperactivation has recently also been observed in ME/CFS [352].

Platelet receptors and interactions with inflammatory molecules, endothelium and leucocytes during inflammation and clotting pathologies (adapted from [652]).

Figure 10.
Platelet receptors and interactions with inflammatory molecules, endothelium and leucocytes during inflammation and clotting pathologies (adapted from [652]).

Created with BioRender (https://biorender.com/).

Figure 10.
Platelet receptors and interactions with inflammatory molecules, endothelium and leucocytes during inflammation and clotting pathologies (adapted from [652]).

Created with BioRender (https://biorender.com/).

Close modal

Platelet hyperactivation noted in a healthy individual (A) and an individual with Long COVID with severe platelet hyperactivation (B).

Figure 11.
Platelet hyperactivation noted in a healthy individual (A) and an individual with Long COVID with severe platelet hyperactivation (B).

Haematocrit samples were exposed to the two fluorescent markers, CD62P (PE-conjugated) (platelet surface P-selectin) (IM1759U, Beckman Coulter, Brea, CA, U.S.A.) and PAC-1 (FITC-conjugated) (340507, BD Biosciences, San Jose, CA, U.S.A.). CD62P is a marker for P-selectin that is either on the membrane of platelets or found inside them. PAC-1 identifies platelets through marking the glycoprotein IIb/IIIa (gpIIb/IIIa) on the platelet membrane. Samples were viewed using a Zeiss Axio Observer 7 fluorescent microscope with a Plan-Apochromat 63x/1.4 Oil DIC M27 objective (Carl Zeiss Microscopy, Munich, Germany). (Unpublished data; Ethics from Stellenbosch University Human Ethics Committee (HREC) number 9521.).

Figure 11.
Platelet hyperactivation noted in a healthy individual (A) and an individual with Long COVID with severe platelet hyperactivation (B).

Haematocrit samples were exposed to the two fluorescent markers, CD62P (PE-conjugated) (platelet surface P-selectin) (IM1759U, Beckman Coulter, Brea, CA, U.S.A.) and PAC-1 (FITC-conjugated) (340507, BD Biosciences, San Jose, CA, U.S.A.). CD62P is a marker for P-selectin that is either on the membrane of platelets or found inside them. PAC-1 identifies platelets through marking the glycoprotein IIb/IIIa (gpIIb/IIIa) on the platelet membrane. Samples were viewed using a Zeiss Axio Observer 7 fluorescent microscope with a Plan-Apochromat 63x/1.4 Oil DIC M27 objective (Carl Zeiss Microscopy, Munich, Germany). (Unpublished data; Ethics from Stellenbosch University Human Ethics Committee (HREC) number 9521.).

Close modal

Interestingly, serotonin receptor antagonists reverse serotonin-mediated pulmonary vasoconstriction, lessen pulmonary platelet trapping, inhibit platelet activation and aggregation, and normalise increased respiratory drive, in severe COVID-19 [667,668]. It was also noted that there is an inverse association between serotonin antagonist medication usage and mortality in severe COVID-19 mortality [669].

Autoimmunity is of course a chief feature of rheumatoid arthritis, and the details are in principle reasonably well understood [14,102–105,670]. It seems that autoimmunity is also a significant contributor to the after-effects of many viral infections [671], including Long COVID [672,673]. The microclots entrap a great many proteins [88], and of course any protein whose conformation is changed may present a new epitope that appears as ‘non-self’ and thus elicits autoantibodies. In addition, the nitration of proteins — as occurs during and following oxidative stress — also leads to the production of autoantibodies [674] and autoantibodies for actin lead to muscle weakness [587]. Autoantibodies are a well-known element in ME/CFS [20,98,548,675,676], and we consider they are likely to play an increasing role as the duration of Long COVID extends, since various autoantibodies share elements of epitope with the SARS-CoV-2 virus [677], and some of the viral sequences are in fact amyloidogenic themselves [678,679]. Since there is significant evidence for viral persistence during Long COVID (e.g. [680], and below), if they and autoantibodies also possess the ability to stimulate fibrin amyloid microclots, this provides one straightforward mechanism for continuing microclot persistence.

In some cases, we are aware that there seems to be a continuation of Long COVID symptoms in spite of all kinds of treatments, and one explanation involves a unusual extent of viral persistence [681], for which there is increasing evidence (e.g. [19,682]). To this end, the suggestion of Brogna et al. [683] that SARS-CoV-2 could act like a bacteriophage and use bacteria as replication hosts is of especial interest. The gut microbiome does of course contain many trillions of organisms [684,685], contributes massively to immunity and inflammation [686], provides a clear pathway between diet and health [687], and would be the most logical place for such a reservoir to persist. The composition of the microbiome is also highly influenced by all kinds of drugs (including [688] but far beyond antibiotics [689–691]). Certainly, the gut and oral [692] microbiomes are highly dysregulated in both acute [693,694] and Long COVID [19,695,696], though the extent to which susceptibility to the disease is a cause or a consequence or both (or involving attendant medications) is largely unclear [697]. This said, one study [695] showed clear predictability between the microbiome and the nature and likelihood of PASC symptoms, while another showed it tracked recovery [698]. Overall it would be astonishing if improvements in the gut microbiome were not accompanied by improvements in the symptoms of PASC, and that certain unfavourable organisms might serve as intermediate hosts for viral replication in the gut. If this is the case, a reset using antibiotics followed by pre- and pro-biotics would seem to be the correct strategy. Persistence through cell–cell viral transmission without release [699] may also occur.

Based on what we have seen above and now know, it is reasonable to rehearse known pharmaceutical drugs [548] for which there is evidence of benefit for those in various stages of ME/CFS or Long COVID. Of course, the efficacy in treating rheumatoid arthritis of various small molecules (‘DMARDs’, which were in fact originally isolated as antibiotics) and anti-inflammatory molecules such as antibodies against TNF-α [700,701], is very well known, giving credence to the importance of such kinds of processes in Long COVID. Antiplatelet and anticoagulation medication may work on different parts of the clotting cascade by blocking platelet activation or by preventing new clots from forming by blocking the enzymatic pathway [86,702–704]. See Figure 12 that shows selected direct oral anticoagulants (DOAC) and dual antiplatelet therapy (DAPT) medication on clotting and platelet function.

Effects of selected direct oral anticoagulants (DOAC) and dual antiplatelet therapy (DAPT) medication on clotting and platelet function.

Figure 12.
Effects of selected direct oral anticoagulants (DOAC) and dual antiplatelet therapy (DAPT) medication on clotting and platelet function.

Created with BioRender (https://biorender.com/).

Figure 12.
Effects of selected direct oral anticoagulants (DOAC) and dual antiplatelet therapy (DAPT) medication on clotting and platelet function.

Created with BioRender (https://biorender.com/).

Close modal

If it is confirmed that individuals with Long COVID do indeed have platelet hyperactivation and microclot presence in their circulation, and these pathologies are not sufficiently treated, we hypothesise that a few scenarios might then develop (see Figure 13):

  • Patients recover spontaneously where their fibrinolytic system returns to healthy clotting and lysis cycles.

  • Patients do not spontaneously recover, but instead develop a persistent hypercoagulable state with the persistent triggering of hyperactivated platelets and persistent endotheliitis, that may lead to more widespread endothelial damage.

  • Microclots continuously entrap inflammatory molecules and will eventually cause immune dysfunction and even autoimmunity.

  • Some individuals, who previously might have suffered from EBV, Herpes simplex virus or Lyme disease might suffer from a flare of those original symptoms, caused by reinfection of even by the vaccine.

  • In some individuals the persistent microclots, and widespread endothelial pathology may culminate in eventually COVID triggering ‘spike/COVID-driven ME/CFS’.

Given that viruses tend to persist (whether in dormant or more active forms) [680], antivirals seem like a logical component of any therapy for ME/CFS [705], though the evidence of strong benefits of any individual drug is still weak [706]. As with any complex system, it is likely that multiple targets will need to be modulated simultaneously [548]. In the case of Long COVID, it is still too early to know what benefits, if any, will come from the deployment of antivirals (which are often quite toxic); the antiparasitic drug ivermectin was advocated as an antiviral in some quarters, but seems not to be effective [707].

Possible Long COVID disease progression if left untreated.

Figure 13.
Possible Long COVID disease progression if left untreated.

Disease/recovery progression developing the acute disease to (A) full recovery; (B) developing Long COVID/PASC; (C) treatment for Long COVID/PASC and subsequent recovery; (D) no treatment or positive treatment outcomes and the eventual development of spike/COVID-driven ME/CFS. Created with BioRender (https://biorender.com/).

Figure 13.
Possible Long COVID disease progression if left untreated.

Disease/recovery progression developing the acute disease to (A) full recovery; (B) developing Long COVID/PASC; (C) treatment for Long COVID/PASC and subsequent recovery; (D) no treatment or positive treatment outcomes and the eventual development of spike/COVID-driven ME/CFS. Created with BioRender (https://biorender.com/).

Close modal

Heparin and Fondaparinux

Heparin is a well-known regulator of the coagulation cascade that is also a potent inhibitor of angiogenesis [708] (see Figure 12). Heparin, therefore, directly modulates the coagulation cascade and is an excellent anticoagulant in diseases where hypercoagulation is prevalent. There are two types of heparins are that are widely used in prophylactically and as treatment regimes: unfractionated heparin (UFH) and low molecular mass heparin (LMWH). UFH can bind to antithrombin (SERPINC1) via a pentasaccharide, catalysing the inactivation of thrombin and other clotting factors. UFH also binds endothelial cells, PF4, and platelets [709]. Antithrombin is an essential regulator of the coagulation cascade and of proteolytic activity, as it acts to inactivate several enzymes of the coagulation cascade. It is well-known to inhibit thrombin and multiple other coagulation factors e.g. FIXa, Xa, XIa, and XIIa. It acts in both the intrinsic and extrinsic pathways [710]. The Heparin of choice is currently LMWH, as it lacks the nonspecific binding affinities of UFH, and has more predictable pharmacokinetic and pharmacodynamic properties [709]. Fondaparinux (a synthetic heparin pentasaccharide with a sequence identical with that found in anticoagulant heparin) is a well-known antithrombotic agent for the prevention and treatment of VTE and in ischaemic heart disease without significant bleeding risk [711]. It has also been suggested that Fondaparinux should be used in the treatment of COVID-19 coagulopathies [712]. As well as its role as an anticoagulant in decreasing mortality with acute COVID-19 [713] it was recognised early in the piece [714] that heparin binds to the SARS-CoV-2 spike protein and can thus inhibit its entry into cells [715]. The usefulness of antithrombotics was also recently discussed in a paper that investigated outcomes of antithrombotic use in patients with atrial fibrillation who subsequently developed COVID-19 [716]. It was found that individuals that were on antithrombotic therapies before they developed COVID-19 were less likely to die from the infection.

In 2020, Viecca and co-workers reported on a single-centre, investigator initiated, proof of concept, case-control study, conducted in Italy. Specifically, the effects of antiplatelet therapy on arterial oxygenation and clinical outcomes in patients with severe COVID-19 with hypercoagulability were investigated in a phase IIb trial (NCT04368377) [717]. Patients received 25 μg/kg body weight tirofiban as bolus infusion, followed by a continuous infusion of 0.15 μg/kg body weight per minute for 48 h. Before tirofiban, patients received acetylsalicylic acid 250 mg infusion and oral clopidogrel 300 mg; both were continued at a dose of 75 mg daily for 30 days. Fondaparinux 2.5 mg/day sub-cutaneous was given for the duration of the hospital stay. The study found that antiplatelet therapy might be effective in improving the ventilation and perfusion ratio in COVID-19 patients with severe respiratory failure and that the therapy prevented clot formation in lung capillary vessels. A recent 2022 JAMA paper [718] discussed the outcome of a trial [719] where moderately ill hospitalised patients with COVID-19, who were given the P2Y12 inhibitor Ticagrelor (in addition to therapeutic doses of heparin) did not improve their health outcome. Data were compared with a group of patients who received only a therapeutic dose of heparin.

Biologics as anti-inflammatories

Inflammation is strongly associated with (and virtually defined as) the production of inflammatory cytokines such as IL-6 and TNF-α (see Figure 9). Any means of lowering either the cause or such effects of inflammation is likely to be beneficial, and so it has proven, with the anti-TNF-α antibodies such as adalimumab (Humira), etanercept (Enbrel), and infliximab (Remicade) demonstrating huge benefits against rheumatoid arthritis, as well as other automimmune diseases. As biosimilars begin to come in (e.g. [720–722]), the substantial costs of the originals [723] may be expected to fall considerably. While there are grounds for optimism that these drugs can assist in the treatment of both acute [724–726] and Long COVID [727], it is too early yet to have the numbers to tell if they will [728]. However, one might have expected them to have been trialled more often in patients with ME/CFS [729], where a variety of inflammatory cytokine levels are also raised [730–732]. Consequently, we consider that such drugs might have considerable benefits in the treatment of both ME/CFS and Long COVID. We note in particular that RA patients taking anti-TNF-α therapies experienced major improvements in their fatigue symptoms [733].

Other drugs

Colchicine has long been used in various inflammatory diseases, and has shown promise in acute COVID-19 [734]. Other drugs being studied for use in ME/CFS or Long COVID include metformin [735–737], fenofibrate (which is somewhat protective against reperfusion injury [738,739]), and low-dose naltrexone [740–742]. While we are no experts, and the mechanisms are normally not well understood [743], but as a segue to the following section on nutraceuticals, we also note the effective use of certain traditional Chinese and other traditional medicines in acute COVID-19 [744–749] and their potential for use in Long COVID [748–750]. This seems like an area well worth further study by those qualified to do so.

Candidate treatments: nutraceuticals

Given the mismatch between the time taken to get a new drug approved and the urgency of the long COVID pandemic, both the literature and social media have turned to the use of nutraceuticals [751–753], at least for treating the symptoms of ME/CFS, Long COVID, and related disorders. It is inconceivable [754] that any single one will work for all individuals, but we consider it worthwhile to rehearse the kinds of nutraceuticals and less mainstream approaches that people have tried in the past for chronic, inflammatory diseases, particularly those whose efficacy may provide evidence the role of ischaemia and I–R injury. This allows us to assess them within the framework of the significance of microclots and oxidative stress caused by chronic ischaemia–reperfusion events that we consider to be a substantial part of these syndromes. Such agents include anti-clotting agents, iron chelators, and antioxidants more generally [3,540,545,755–758] (although the latter two are heavily bound up with each other [106]).

N-acetyl cysteine

N-acetyl cysteine is a well established and widely used antioxidant and anti-inflammatory molecule [759–762], which acts both to increase the intracellular levels of glutathione and to decreases the downstream activities of NF-κB. It has shown benefits in rheumatoid arthritis [763–765], in various viral diseases [766], and in abating the cytokine storm in acute COVID [767,768].

Curcumin

Curcumin is a polyphenol antioxidant and the active constituent (and main colouring agent) of the spice turmeric. It has shown benefits in a variety of diseases involving oxidative stress [542,769–774], including ME/CFS [234,775], rheumatoid arthritis [776–780], and acute COVID-19 [781–783]. While curcumin is a well-established antioxidant, it should be noted that it also may have antiplatelet activities [784–786]. In consequence, it is contra-indicated (i.e. not recommended for) use with other anticoagulants or blood thinners.

Ergothioneine

Ergothioneine is a major antioxidant [787–794] considered sufficiently important to the host during evolution that a natural transporter (SLC22A4 in humans) has been selected to ensure its uptake [795–797]. As we originally proposed [798], its anti-inflammatory potency has been established in a model of pre-eclampsia [799]. It is strongly protective against diseases of oxidative stress affecting the heart [793,800], liver [801,802], kidney [802], CNS [803,804], and other tissues (e.g. [794,805]. Consequently, it has been proposed as a suitable antioxidant for use in COVID-19 amelioration [806]. Most pertinently to the present analysis, it has been shown to be of benefit in preventing ischaemia–reperfusion injury [794,801,807], and so could have real value in chronic diseases that exhibit it. It is not easily obtained in pure form (though biotechnological processes are starting to make it [808–817]), but its availability via mushrooms can provide a convenient supply [818–820]. Indeed mushrooms themselves have been shown to be highly protective against mild cognitive impairment [821], as well as other diseases involving oxidative stress [787], and are themselves under consideration and trial as anti-COVID-19 agents [822,823].

Flavonoids

Flavonoids of various kinds, often referred to as polyphenols [824], are widely recognised as antioxidants with the potential in ameliorating inflammatory diseases involving oxidative stress (e.g. [606,825–832]). Since much of their bioavailability depends on suitable transporters [827,833] it would seem wise to use a cocktail. They have shown benefits in rheumatoid arthritis [778,826,834–842], in ME/CFS [843–845], and even activity against coronaviruses [846] such as the SARS-CoV-2 responsible for acute COVID-19 [847–858] and Long COVID [859].

Iron chelation

As noted above, and reviewed e.g. in [15,106], free iron can contribute massively to oxidative stress. Ferritin is the main intracellular storage molecule for iron, and serum ferritin is a marker of cell death [149]; it is, therefore, unsurprising that it is raised massively in acute SARS-CoV-2 infection, and especially so in non-survivors [512,860–866]. Consequently, molecules that chelate iron fully (i.e. via all six of its chelation sites, see above) can serve to relieve oxidative stress [862,865,867–870] and inhibit SARS-CoV-2 effects [871]. Other nutraceutical iron chelators such as green tea catechins (epigallocatechin-3-gallate, also a polyphenol) [872–881] were discussed in detail previously [106].

Lactoferrin

As commented in the previous section, iron dysregulation is another important element of all these chronic, inflammatory diseases, both through its behaviour in catalysing ROS formation [106,266] and hypercoagulation [326], and its ability to awaken dormant microbes [15]. Since it binds iron effectively, as well as various cell surface receptors used by SARS-CoV-2, oral lactoferrin has been proposed as a suitable treatment for (and indeed preventive of) COVID-19 [372,868,869,882–894].

Magnesium

Although blood levels of magnesium ions are more-or-less tightly regulated, ‘magnesium’ was experimentally one of the earliest substances that we found to inhibit fibrin amyloid microclotting (then known as dense matted deposit formation) [374]. Intriguingly, populations exhibiting low magnesium ion levels were found to be more susceptible to COVID-19 [895], and magnesium supplementation has shown benefits in SARS-CoV-2 therapy [896], ME/CFS [93,897], and in maintaining endothelial cell function [898].

Melatonin

Melatonin is a natural small molecule (a tryptophan derivative) produced in the pineal gland and involved in the induction of sleep [899]; it has been strongly promoted for its anti-oxidative and anti-nitrosative properties [900–902], including in COVID [903–911], and I–R injury [912], and is a useful ligand for free iron [106].

Thrombolytics: nattokinase, serrapeptase, lumbrokinase, and bromleain

Clots are normally removed by plasmin, a serine protease, but some clots (such as fibrin amyloid microclots) contain antiplasmin compounds [88]; the plasma of acute COVID patients also contains anti-thrombolytic compounds [913–915], despite raised levels of tissue plasminogen activator (tPA) [915]. However, a variety of other enzymes have thrombolytic activity [916–919]. Considered less potent and safer than post-stroke ‘clotbusters’ such as tPA [920], nattokinase is a fibrinolytic [921–923] (and amyloid-degrading [924]), orally available despite having to pass through the gut wall [925–931], safe [932,933], serine protease enzyme from Bacillus subtilis (an organism which may itself be of value [934]). It is found naturally in the Japanese fermented food nattō [751,928,935–939], (which is also a source of vitamin K, and has antiviral properties directly [940]). Its structure is known [941,942], and it may also be produced recombinantly [943–950]. It also has antiplatelet [951], anti-inflammatory [952], and anti-hypertensive [953] properties, and along with pycnogenol [954] was active in preventing DVT on longhaul flights [955]. Serrapeptase (serratiopeptidase) [934,956–959] has a similar activity (as well as others such as mucolytic behaviour [958]) and comes from a Serratia marcescens strain that originates in the guts of silkworms, where it has a natural role in helping the worms emerge from their cocoons. Lumbrokinases are another orally active [960] set of fibrinolytic enzymes that have been found in earthworms [961–965], and may also be produced recombinantly [966,967]; they may also have some tPA activity [965]. Each has been proposed as of value in acute and/or Long COVID treatment [751,958,968]. With two (positive) exceptions [968,969], and another planned [970], randomised controlled trials are awaited. In the plant kingdom, bromelain (from pineapples) is a cysteine protease found in pineapple tissue [971–974]. Multiple effects imply its utility in preventing or treating SARS-CoV-2 infection and acute COVID-19 [975–978]. Given the significance of fibrin amyloid microclots; however, it would seem of value (i) to stress the importance of quality control in nutraceutical production and (ii) to assess the comparative activities of these enzymes in removing fibrin amyloid microclots in vitro.

Vitamins

There is little doubt that many individuals may be deficient in their dietary supply of one or more vitamins [979]. In particular, there is evidence for the importance of vitamins B12 [980–983], D3 [906,983–986], and K2 [987–990] in benefitting outcome from acute COVID. However, in some cases where ‘vitamin D’ is not explicitly measured as D3 the evidence is equivocal [991–993]. As mentioned above, vitamin C [994] is to be recommended only if one is sure that free or poorly liganded iron is absent. Niacin (vitamin B3) may also be of value in a tapered-up strategy, since NAD+ levels are known to be lowered in COVID-19 [995] and other viral infections [996]; its metabolite 1-methylnicotinamide has also shown promise in Long COVID [997].

Overall, there is a considerable body of evidence that nutraceuticals active as antioxidants, iron chelators, or fibrinolytics, as well as other targets, may be of benefit in the sets of diseases under consideration here, consistent with the role of ischaemia–reperfusion injury therein.

H.E.L.P.: apheresis

Apheresis refers to the specific extracorporeal removal of particular substances from blood, such as lipids [998,999]. Originally introduced for the lowering of low-density lipoproteins (LDLs) (e.g. [1000,1001]), Heparin-mediated LDL precipitation (H.E.L.P.) apheresis has come to the fore as a means for assisting Long COVID patients, since it too seems to remove fibrin amyloid microclots with high efficiency. Alternative aphereses [1002,1003] also be of value.

Hyperbaric oxygen therapy

If ischaemia is an important part of Long COVID, then preventing it (while not mimicking reperfusion) should be of value [1004,1005]. To this end, hyperbaric oxygen therapy [1006–1008] has been recommended, and in some cases found useful in rheumatoid arthritis [1009–1011], acute [1012,1013] and Long COVID [1006,1014]. An alternative involves O2 nanobubbles [1015].

Concluding remarks

We have sought to bring together what is the very considerable evidence that many of the features of Long COVID resemble those observed in ME/CFS, and to some degree those in rheumatoid arthritis, and that a common denominator may be fibrin amyloid microclots and damaged cell structures that block up capillaries and can consequently lead to oxidative stress and ischaemia–reperfusion injury (Figure 14).

Some of the major elements of Long COVID and related diseases that we have highlighted here.

Figure 14.
Some of the major elements of Long COVID and related diseases that we have highlighted here.

They illustrate the complexity of ischaemia–reperfusion injury driven by platelet hyperactivation, fibrin amyloid microclots, circulating inflammatory molecules/cytokine production. Created with BioRender (https://biorender.com/).

Figure 14.
Some of the major elements of Long COVID and related diseases that we have highlighted here.

They illustrate the complexity of ischaemia–reperfusion injury driven by platelet hyperactivation, fibrin amyloid microclots, circulating inflammatory molecules/cytokine production. Created with BioRender (https://biorender.com/).

Close modal

Many of the predicted sequelae have indeed been observed, and thus provide evidence for this general mechanism of chronic illness. If the analysis is correct it implies that considerable therapeutic benefits are to be had from strategies that inhibit the formation of the microclots and that act — especially the use of antioxidants — to diminish the effects of ROS by mopping them up. A variety of further predictions remain to be tested, but we hope that we have set them out clearly enough to enable others to do so.

All authors approved the submission of the paper.

E.P. is the managing director of BioCODE Technologies. D.B.K. holds shares in PhenUTest Ltd. These companies are developing or contemplating developing diagnostics for Long COVID.

Douglas Kell: Conceptualization, Funding acquisition, Writing — original draft, Writing — review and editing. Etheresia Pretorius: Conceptualization, Funding acquisition, Writing — original draft, Writing — review and editing.

D.B.K. thanks Rachel Stark for a useful conversation. D.B.K. thanks the Novo Nordisk Foundation for financial support (grant no. NNF20CC0035580). E.P. thanks the South Africa MRC (SIR grant 2022–2024) and the NRF from South Africa: Competitive Programme for Rated Researchers (grant no. 142142) for grant support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the discussants at the twitter hashtag #TeamClots for sharing many useful insights.

CR1

complement receptor 1

DVT

deep vein thrombosis

EBV

Epstein–Barr virus

ESR

erythrocyte sedimentation rates

I–R

ischaemia–reperfusion

LDLs

low-density lipoproteins

LMWH

low molecular mass heparin

PE

pulmonary embolism

PEM

post-exertional malaise

PF4

platelet factor 4

RDW

red cell distribution width

ROS

reactive oxygen species

TBARS

thiobarbituric acid reactive substances

tPA

tissue plasminogen activator

UFH

unfractionated heparin

VTE

venous thromboembolism

VWF

von Willebrand factor

1
Wu
,
M.Y.
,
Yiang
,
G.T.
,
Liao
,
W.T.
,
Tsai
,
A.P.
,
Cheng
,
Y.L.
,
Cheng
,
P.W.
et al. (
2018
)
Current mechanistic concepts in ischemia and reperfusion injury
.
Cell. Physiol. Biochem.
46
,
1650
1667
2
Hausenloy
,
D.J.
and
Yellon
,
D.M.
(
2013
)
Myocardial ischemia-reperfusion injury: a neglected therapeutic target
.
J. Clin. Invest.
123
,
92
100
3
Daiber
,
A.
,
Andreadou
,
I.
,
Oelze
,
M.
,
Davidson
,
S.M.
and
Hausenloy
,
D.J.
(
2021
)
Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure
.
Free Rad. Biol. Med.
163
,
325
343
4
Murphy
,
E.
and
Steenbergen
,
C.
(
2008
)
Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
.
Physiol. Rev.
88
,
581
609
5
Enzmann
,
G.
,
Kargaran
,
S.
and
Engelhardt
,
B.
(
2018
)
Ischemia-reperfusion injury in stroke: impact of the brain barriers and brain immune privilege on neutrophil function
.
Ther. Adv. Neurol. Disord.
11
,
1756286418794184
6
Wu
,
M.
,
Gu
,
X.
and
Ma
,
Z.
(
2021
)
Mitochondrial quality control in cerebral ischemia-reperfusion injury
.
Mol. Neurobiol.
58
,
5253
5271
7
Naito
,
H.
,
Nojima
,
T.
,
Fujisaki
,
N.
,
Tsukahara
,
K.
,
Yamamoto
,
H.
,
Yamada
,
T.
et al. (
2020
)
Therapeutic strategies for ischemia reperfusion injury in emergency medicine
.
Acute Med. Surg.
7
,
e501
8
Aigner
,
F.
,
Maier
,
H.T.
,
Schwelberger
,
H.G.
,
Wallnofer
,
E.A.
,
Amberger
,
A.
,
Obrist
,
P.
et al. (
2007
)
Lipocalin-2 regulates the inflammatory response during ischemia and reperfusion of the transplanted heart
.
Am. J. Transplant.
7
,
779
788
9
Jaeschke
,
H.
and
Woolbright
,
B.L.
(
2012
)
Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species
.
Transplant. Rev.
26
,
103
114
10
Situmorang
,
G.R.
and
Sheerin
,
N.S.
(
2019
)
Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction
.
Pediatr. Nephrol.
34
,
951
963
11
Zhai
,
Y.
,
Petrowsky
,
H.
,
Hong
,
J.C.
,
Busuttil
,
R.W.
and
Kupiec-Weglinski
,
J.W.
(
2013
)
Ischaemia–reperfusion injury in liver transplantation--from bench to bedside
.
Nat. Rev. Gastroenterol. Hepatol.
10
,
79
89
12
Chouchani
,
E.T.
,
Pell
,
V.R.
,
Gaude
,
E.
,
Aksentijevic
,
D.
,
Sundier
,
S.Y.
,
Robb
,
E.L.
et al. (
2014
)
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
.
Nature
515
,
431
435
13
Granger
,
D.N.
and
Kvietys
,
P.R.
(
2015
)
Reperfusion injury and reactive oxygen species: the evolution of a concept
.
Redox Biol.
6
,
524
551
14
Pretorius
,
E.
,
Akeredolu
,
O.-O.
,
Soma
,
P.
and
Kell
,
D.B.
(
2017
)
Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability
.
Exp. Biol. Med.
242
,
355
373
15
Kell
,
D.B.
and
Pretorius
,
E.
(
2018
)
No effects without causes. The iron dysregulation and dormant microbes hypothesis for chronic, inflammatory diseases
.
Biol. Rev.
93
,
1518
1557
16
Rasa
,
S.
,
Nora-Krukle
,
Z.
,
Henning
,
N.
,
Eliassen
,
E.
,
Shikova
,
E.
,
Harrer
,
T.
et al. (
2018
)
Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)
.
J. Transl. Med.
16
,
268
17
Nalbandian
,
A.
,
Sehgal
,
K.
,
Gupta
,
A.
,
Madhavan
,
M.V.
,
McGroder
,
C.
,
Stevens
,
J.S.
et al. (
2021
)
Post-acute COVID-19 syndrome
.
Nat. Med.
27
,
601
615
18
Komaroff
,
A.L.
and
Lipkin
,
W.I.
(
2021
)
Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome
.
Trends Mol. Med.
27
,
895
906
19
Proal
,
A.D.
and
VanElzakker
,
M.B.
(
2021
)
Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms
.
Front. Microbiol.
12
,
698169
20
Sukocheva
,
O.A.
,
Maksoud
,
R.
,
Beeraka
,
N.M.
,
Madhunapantula
,
S.V.
,
Sinelnikov
,
M.
,
Nikolenko
,
V.N.
et al. (
2022
)
Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome
.
J. Adv. Res.
Still in press
.
21
van Campen
,
C.L.M.C.
,
Rowe
,
P.C.
and
Visser
,
F.C.
(
2021
)
Orthostatic symptoms and reductions in cerebral blood flow in long-Haul COVID-19 patients: similarities with myalgic encephalomyelitis/chronic fatigue syndrome
.
Medicina (Kaunas)
58
,
28
22
Wong
,
T.L.
and
Weitzer
,
D.J.
(
2021
)
Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-a systemic review and comparison of clinical presentation and symptomatology
.
Medicina (Kaunas)
57
,
418
23
Sapkota
,
H.R.
and
Nune
,
A.
(
2022
)
Long COVID from rheumatology perspective - a narrative review
.
Clin. Rheumatol.
41
,
337
348
24
Agergaard
,
J.
,
Leth
,
S.
,
Pedersen
,
T.H.
,
Harbo
,
T.
,
Blicher
,
J.U.
,
Karlsson
,
P.
et al. (
2021
)
Myopathic changes in patients with long-term fatigue after COVID-19
.
Clin. Neurophysiol.
132
,
1974
1981
25
Akbarialiabad
,
H.
,
Taghrir
,
M.H.
,
Abdollahi
,
A.
,
Ghahramani
,
N.
,
Kumar
,
M.
,
Paydar
,
S.
et al. (
2021
)
Long COVID, a comprehensive systematic scoping review
.
Infection
49
,
1163
1186
26
Davis
,
H.E.
,
Assaf
,
G.S.
,
McCorkell
,
L.
,
Wei
,
H.
,
Low
,
R.J.
,
Re'em
,
Y.
et al. (
2021
)
Characterizing long COVID in an international cohort: 7 months of symptoms and their impact
.
EClinicalMedicine
38
,
101019
27
Joshee
,
S.
,
Vatti
,
N.
and
Chang
,
C.
(
2022
)
Long-term effects of COVID-19
.
Mayo Clin. Proc.
97
,
579
599
28
Ladds
,
E.
,
Rushforth
,
A.
,
Wieringa
,
S.
,
Taylor
,
S.
,
Rayner
,
C.
,
Husain
,
L.
et al. (
2020
)
Persistent symptoms after COVID-19: qualitative study of 114 "long COVID" patients and draft quality principles for services
.
BMC Health Serv. Res.
20
,
1144
29
Nacul
,
L.
,
O'Boyle
,
S.
,
Palla
,
L.
,
Nacul
,
F.E.
,
Mudie
,
K.
,
Kingdon
,
C.C.
et al. (
2020
)
How myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) progresses: the natural history of ME/CFS
.
Front. Neurol.
11
,
826
30
Raveendran
,
A.V.
,
Jayadevan
,
R.
and
Sashidharan
,
S.
(
2021
)
Long COVID: an overview
.
Diabetes Metab. Syndr.
15
,
869
875
31
Twomey
,
R.
,
DeMars
,
J.
,
Franklin
,
K.
,
Culos-Reed
,
S.N.
,
Weatherald
,
J.
and
Wrightson
,
J.G.
(
2021
)
Chronic fatigue and post-exertional malaise in people living with long COVID
.
medRxiv
2021.2006.2011.21258564
32
Vehar
,
S.
,
Boushra
,
M.
,
Ntiamoah
,
P.
and
Biehl
,
M.
(
2021
)
Post-acute sequelae of SARS-CoV-2 infection: caring for the 'long-haulers'
.
Cleve Clin. J. Med.
88
,
267
272
33
Walitt
,
B.
and
Bartrum
,
E.
(
2021
)
A clinical primer for the expected and potential post-COVID-19 syndromes
.
Pain Rep.
6
,
e887
34
Yong
,
S.J.
and
Liu
,
S.
(
2021
)
Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies
.
Rev. Med. Virol.
32
,
e2315
35
Ceban
,
F.
,
Ling
,
S.
,
Lui
,
L.M.W.
,
Lee
,
Y.
,
Gill
,
H.
,
Teopiz
,
K.M.
et al. (
2022
)
Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis
.
Brain Behav. Immun.
101
,
93
135
36
Brown
,
D.A.
and
O'Brien
,
K.K.
(
2021
)
Conceptualising long COVID as an episodic health condition
.
BMJ Glob. Health
6
,
e007004
37
O'Brien
,
K.K.
,
Brown
,
D.A.
,
Bergin
,
C.
,
Erlandson
,
K.M.
,
Vera
,
J.H.
,
Avery
,
L.
et al. (
2022
)
Long COVID and episodic disability: advancing the conceptualisation, measurement and knowledge of episodic disability among people living with long COVID - protocol for a mixed-methods study
.
BMJ Open
12
,
e060826
38
Nune
,
A.
,
Durkowski
,
V.
,
Titman
,
A.
,
Gupta
,
L.
,
Hadzhiivanov
,
M.
,
Ahmed
,
A.
et al. (
2021
)
Incidence and risk factors of long COVID in the UK: a single-centre observational study
.
J. R. Coll. Physicians Edinb.
51
,
338
343
39
Salmon-Ceron
,
D.
,
Slama
,
D.
,
De Broucker
,
T.
,
Karmochkine
,
M.
,
Pavie
,
J.
,
Sorbets
,
E.
et al. (
2021
)
Clinical, virological and imaging profile in patients with prolonged forms of COVID-19: a cross-sectional study
.
J. Infect.
82
,
e1
e4
40
Stewart
,
S.
,
Newson
,
L.
,
Briggs
,
T.A.
,
Grammatopoulos
,
D.
,
Young
,
L.
and
Gill
,
P.
(
2021
)
Long COVID risk - a signal to address sex hormones and women's health
.
Lancet Reg. Health Eur.
11
,
100242
41
Ortona
,
E.
,
Buonsenso
,
D.
,
Carfi
,
A.
,
Malorni
,
W.
and
Long COVID kids study group
(
2021
)
Long COVID: an estrogen-associated autoimmune disease?
Cell Death Discov.
7
,
77
42
Ortona
,
E.
and
Malorni
,
W.
(
2022
)
Long COVID: to investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy
.
Eur. Respir. J.
59
,
2102245
43
Bateman
,
L.
,
Bested
,
A.C.
,
Bonilla
,
H.F.
,
Chheda
,
B.V.
,
Chu
,
L.
,
Curtin
,
J.M.
et al. (
2021
)
Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management
.
Mayo Clin. Proc.
96
,
2861
2878
44
Carruthers
,
B.M.
,
van de Sande
,
M.I.
,
De Meirleir
,
K.L.
,
Klimas
,
N.G.
,
Broderick
,
G.
,
Mitchell
,
T.
et al. (
2011
)
Myalgic encephalomyelitis: international consensus criteria
.
J. Internsive Med.
270
,
327
338
45
Green
,
M.A.
and
Shearman
,
C.P.
(
1994
)
Reperfusion injury in peripheral vascular disease
.
Vasc. Med. Rev.
5
,
97
106
46
Chen
,
C.
,
Haupert
,
S.R.
,
Zimmermann
,
L.
,
Shi
,
X.
,
Fritsche
,
L.G.
and
Mukherjee
,
B.
(
2021
)
Global prevalence of post-acute sequelae of COVID-19 (PASC) or long COVID: a meta-analysis and systematic review
.
medRxiv
2021.2011.2015.21266377
47
Gold
,
J.E.
,
Okyay
,
R.A.
,
Licht
,
W.E.
and
Hurley
,
D.J.
(
2021
)
Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation
.
Pathogens
10
,
763
48
Marshall
,
M.
(
2021
)
The four most urgent questions about long COVID
.
Nature
594
,
168
170
49
Arjun
,
M.C.
,
Singh
,
A.K.
,
Pal
,
D.
,
Das
,
K.
,
Gajjala
,
A.
,
Venkateshan
,
M.
et al. (
2022
)
Prevalence, characteristics, and predictors of long COVID among diagnosed cases of COVID-19
.
medRxiv
2022.2001.2004.21268536
50
Taquet
,
M.
,
Dercon
,
Q.
,
Luciano
,
S.
,
Geddes
,
J.R.
,
Husain
,
M.
and
Harrison
,
P.J.
(
2021
)
Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19
.
PLoS Med.
18
,
e1003773
51
Yomogida
,
K.
,
Zhu
,
S.
,
Rubino
,
F.
,
Figueroa
,
W.
,
Balanji
,
N.
and
Holman
,
E.
(
2021
)
Post-acute sequelae of SARS-CoV-2 infection among adults aged ≥8 years - long beach, California, April 1-December 10, 2020
.
MMWR Morb. Mortal. Wkly Rep.
70
,
1274
1277
52
Whitaker
,
M.
,
Elliott
,
J.
,
Chadeau-Hyam
,
M.
,
Riley
,
S.
,
Darzi
,
A.
,
Cooke
,
G.
et al. (
2022
)
Persistent COVID-19 symptoms in a community study of 606,434 people in England
.
Nat. Commun.
13
,
1957
53
Chen
,
C.
,
Haupert
,
S.R.
,
Zimmermann
,
L.
,
Shi
,
X.
,
Fritsche
,
L.G.
and
Mukherjee
,
B.
(
2022
)
Global prevalence of post COVID-19 condition or long COVID: a meta-analysis and systematic review
.
J. Infect. Dis.
jiac136
54
Nasserie
,
T.
,
Hittle
,
M.
and
Goodman
,
S.N.
(
2021
)
Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review
.
JAMA Netw. Open.
4
,
e2111417
55
Reese
,
J.
,
Blau
,
H.
,
Bergquist
,
T.
,
Loomba
,
J.J.
,
Callahan
,
T.
,
Laraway
,
B.
et al. (
2022
)
Generalizable long COVID subtypes: findings from the NIH N3C and RECOVER programs
.
medRxiv
2022.2005.2024.22275398
56
Ayoubkhani
,
D.
,
Bermingham
,
C.
,
Pouwels
,
K.B.
,
Glickman
,
M.
,
Nafilyan
,
V.
,
Zaccardi
,
F.
et al. (
2021
)
Changes in the trajectory of long COVID symptoms following COVID-19 vaccination: community-based cohort study
.
medRxiv
2021.2012.2009.21267516
57
Caspersen
,
I.H.
,
Magnus
,
P.
and
Trogstad
,
L.
(
2021
)
Excess risk and clusters of symptoms after COVID-19 in a large Norwegian cohort
.
medRxiv
2021.2010.2015.21265038
58
Munblit
,
D.
,
Nicholson
,
T.R.
,
Needham
,
D.M.
,
Seylanova
,
N.
,
Parr
,
C.
,
Chen
,
J.
et al. (
2022
)
Studying the post-COVID-19 condition: research challenges, strategies, and importance of core outcome Set development
.
BMC Med.
20
,
50
59
Desai
,
A.D.
,
Lavelle
,
M.
,
Boursiquot
,
B.C.
and
Wan
,
E.Y.
(
2022
)
Long-term complications of COVID-19
.
Am. J. Physiol. Cell Physiol.
322
,
C1
C11
60
Xie
,
Y.
and
Al-Aly
,
Z.
(
2022
)
Risks and burdens of incident diabetes in long COVID: a cohort study
.
Lancet Diabetes Endocrinol.
10
,
311
321
61
Xie
,
Y.
,
Xu
,
E.
,
Bowe
,
B.
and
Al-Aly
,
Z.
(
2022
)
Long-term cardiovascular outcomes of COVID-19
.
Nat. Med.
28
,
583
590
62
Martínez-Salazar
,
B.
,
Holwerda
,
M.
,
Studle
,
C.
,
Piragyte
,
I.
,
Mercader
,
N.
,
Engelhardt
,
B.
et al. (
2022
)
COVID-19 and the vasculature: current aspects and long-term consequences
.
Front. Cell Dev. Biol.
10
,
824851
63
Graham
,
E.L.
,
Clark
,
J.R.
,
Orban
,
Z.S.
,
Lim
,
P.H.
,
Szymanski
,
A.L.
,
Taylor
,
C.
et al. (
2021
)
Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 "long haulers"
.
Ann. Clin. Transl. Neurol.
8
,
1073
1085
64
Deer
,
R.R.
,
Rock
,
M.A.
,
Vasilevsky
,
N.
,
Carmody
,
L.
,
Rando
,
H.
,
Anzalone
,
A.J.
et al. (
2021
)
Characterizing long COVID: deep phenotype of a complex condition
.
EBioMedicine
74
,
103722
65
Michelen
,
M.
,
Manoharan
,
L.
,
Elkheir
,
N.
,
Cheng
,
V.
,
Dagens
,
A.
,
Hastie
,
C.
et al. (
2021
)
Characterising long COVID: a living systematic review
.
BMJ Glob. Health
6
,
e005427
66
Bell
,
M.L.
,
Catalfamo
,
C.J.
,
Farland
,
L.V.
,
Ernst
,
K.C.
,
Jacobs
,
E.T.
,
Klimentidis
,
Y.C.
et al. (
2021
)
Post-acute sequelae of COVID-19 in a non-hospitalized cohort: results from the Arizona CoVHORT
.
PLoS One
16
,
e0254347
67
Blomberg
,
B.
,
Mohn
,
K.G.
,
Brokstad
,
K.A.
,
Zhou
,
F.
,
Linchausen
,
D.W.
,
Hansen
,
B.A.
et al. (
2021
)
Long COVID in a prospective cohort of home-isolated patients
.
Nat. Med.
27
,
1607
1613
68
Logue
,
J.K.
,
Franko
,
N.M.
,
McCulloch
,
D.J.
,
McDonald
,
D.
,
Magedson
,
A.
,
Wolf
,
C.R.
et al. (
2021
)
Sequelae in adults at 6 months after COVID-19 infection
.
JAMA Netw. Open.
4
,
e210830
69
Sudre
,
C.H.
,
Murray
,
B.
,
Varsavsky
,
T.
,
Graham
,
M.S.
,
Penfold
,
R.S.
,
Bowyer
,
R.C.
et al. (
2021
)
Attributes and predictors of long COVID
.
Nat. Med.
27
,
626
631
70
Mandal
,
S.
,
Barnett
,
J.
,
Brill
,
S.E.
,
Brown
,
J.S.
,
Denneny
,
E.K.
,
Hare
,
S.S.
et al. (
2021
)
'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19
.
Thorax
76
,
396
398
71
Nurek
,
M.
,
Rayner
,
C.
,
Freyer
,
A.
,
Taylor
,
S.
,
Jarte
,
L.
,
MacDermott
,
N.
et al. (
2021
)
Recommendations for the recognition, diagnosis, and management of long COVID: a Delphi study
.
Br. J. Gen. Pract.
71
,
e815
e825
72
Sigfrid
,
L.
,
Drake
,
T.M.
,
Pauley
,
E.
,
Jesudason
,
E.C.
,
Olliaro
,
P.
,
Lim
,
W.S.
et al. (
2021
)
Long COVID in adults discharged from UK hospitals after COVID-19: a prospective, multicentre cohort study using the ISARIC WHO clinical characterisation protocol
.
Lancet Reg. Health Eur.
8
,
100186
73
Greenhalgh
,
T.
,
Knight
,
M.
,
A'Court
,
C.
,
Buxton
,
M.
and
Husain
,
L.
(
2020
)
Management of post-acute COVID-19 in primary care
.
BMJ
370
,
m3026
74
Rando
,
H.M.
,
Bennett
,
T.D.
,
Byrd
,
J.B.
,
Bramante
,
C.
,
Callahan
,
T.J.
,
Chute
,
C.G.
et al. (
2021
)
Challenges in defining Long COVID: striking differences across literature, Electronic Health Records, and patient-reported information
.
medRxiv
75
Tereshchenko
,
L.G.
,
Bishop
,
A.
,
Fisher-Campbell
,
N.
,
Levene
,
J.
,
Morris
,
C.C.
,
Patel
,
H.
et al. (
2021
)
Risk of cardiovascular events after COVID-19: a double-cohort study
.
medRxiv
2021.2012.2027.21268448
76
Asadi-Pooya
,
A.A.
,
Akbari
,
A.
,
Emami
,
A.
,
Lotfi
,
M.
,
Rostamihosseinkhani
,
M.
,
Nemati
,
H.
et al. (
2021
)
Long COVID syndrome-associated brain fog
.
J. Med. Virol.
94
,
979
984
77
Stefanou
,
M.I.
,
Palaiodimou
,
L.
,
Bakola
,
E.
,
Smyrnis
,
N.
,
Papadopoulou
,
M.
,
Paraskevas
,
G.P.
et al. (
2022
)
Neurological manifestations of long-COVID syndrome: a narrative review
.
Ther. Adv. Chronic. Disord.
13
,
20406223221076890
78
Hampshire
,
A.
,
Trender
,
W.
,
Chamberlain
,
S.R.
,
Jolly
,
A.E.
,
Grant
,
J.E.
,
Patrick
,
F.
et al. (
2021
)
Cognitive deficits in people who have recovered from COVID-19
.
EClinicalMedicine
39
,
101044
79
Marshall
,
M.
(
2021
)
COVID and the brain: researchers zero in on how damage occurs
.
Nature
595
,
484
485
80
Glynne
,
P.
,
Tahmasebi
,
N.
,
Gant
,
V.
and
Gupta
,
R.
(
2021
)
Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines
.
J. Investig. Med.
70
,
61
67
81
Montes
,
N.
,
Domènech
,
È
,
Guerrero
,
S.
,
Oliván-Blázquez
,
B.
and
Magallón-Botaya
,
R.
(
2021
)
Analysis of cell-mediated immunity in people with long COVID
.
medRxiv
2021.2006.2009.21258553
82
Grobler
,
C.
,
Maphumulo
,
S.C.
,
Grobbelaar
,
L.M.
,
Bredenkamp
,
J.
,
Laubscher
,
J.
,
Lourens
,
P.J.
et al. (
2020
)
COVID-19: the rollercoaster of fibrin(ogen), D-dimer, von willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes
.
Int. J. Mol. Sci.
21
,
5168
83
Katsoularis
,
I.
,
Fonseca-Rodríguez
,
O.
,
Farrington
,
P.
,
Lindmark
,
K.
and
Fors Connolly
,
A.M.
(
2021
)
Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study
.
Lancet
398
,
599
607
84
Grobbelaar
,
L.M.
,
Venter
,
C.
,
Vlok
,
M.
,
Ngoepe
,
M.
,
Laubscher
,
G.J.
,
Lourens
,
P.J.
et al. (
2021
)
SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19
.
Biosci. Rep.
41
,
BSR20210611
85
Kell
,
D.B.
,
Laubscher
,
G.J.
and
Pretorius
,
E.
(
2022
)
A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications
.
Biochem. J.
479
,
537
559
86
Laubscher
,
G.J.
,
Lourens
,
P.J.
,
Venter
,
C.
,
Kell
,
D.B.
and
Pretorius
,
E.
(
2021
)
TEG®, microclot and platelet mapping for guiding early management of severe COVID-19 coagulopathy
.
J. Clin. Med.
10
,
5381
87
Pretorius
,
E.
,
Venter
,
C.
,
Laubscher
,
G.J.
,
Lourens
,
P.J.
,
Steenkamp
,
J.
and
Kell
,
D.B.
(
2020
)
Prevalence of readily detected amyloid blood clots in ‘unclotted’ type 2 diabetes mellitus and COVID-19 plasma: a preliminary report
.
Cardiovasc. Diabetol.
19
,
193
88
Pretorius
,
E.
,
Vlok
,
M.
,
Venter
,
C.
,
Bezuidenhout
,
J.A.
,
Laubscher
,
G.J.
,
Steenkamp
,
J.
et al. (
2021
)
Persistent clotting protein pathology in long COVID/ post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin
.
Cardiovasc. Diabetol.
20
,
172
89
Pretorius
,
E.
,
Venter
,
C.
,
Laubscher
,
G.J.
,
Kotze
,
M.J.
,
Oladejo
,
S.
,
Watson
,
L.R.
et al. (
2022
)
Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) Research Square
90
Kavi
,
L.
(
2022
)
Postural tachycardia syndrome and long COVID: an update
.
Br. J. Gen. Pract.
72
,
8
9
91
Novak
,
P.
,
Mukerji
,
S.S.
,
Alabsi
,
H.S.
,
Systrom
,
D.
,
Marciano
,
S.P.
,
Felsenstein
,
D.
et al. (
2022
)
Multisystem involvement in post-acute sequelae of coronavirus disease 19
.
Ann. Neurol.
91
,
367
379
92
Singh
,
I.
,
Joseph
,
P.
,
Heerdt
,
P.M.
,
Cullinan
,
M.
,
Lutchmansingh
,
D.D.
,
Gulati
,
M.
et al. (
2022
)
Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing
.
Chest
161
,
54
63
93
Afari
,
N.
and
Buchwald
,
D.
(
2003
)
Chronic fatigue syndrome: a review
.
Am. J. Psychiatry
160
,
221
236
94
Lee
,
J.S.
,
Kim
,
H.G.
,
Lee
,
D.S.
and
Son
,
C.G.
(
2018
)
Oxidative stress is a convincing contributor to idiopathic chronic fatigue
.
Sci. Rep.
8
,
12890
95
Mantovani
,
E.
,
Mariotto
,
S.
,
Gabbiani
,
D.
,
Dorelli
,
G.
,
Bozzetti
,
S.
,
Federico
,
A.
et al. (
2021
)
Chronic fatigue syndrome: an emerging sequela in COVID-19 survivors?
J. Neurovirol.
27
,
631
637
96
Joseph
,
P.
,
Arevalo
,
C.
,
Oliveira
,
R.K.F.
,
Faria-Urbina
,
M.
,
Felsenstein
,
D.
,
Oaklander
,
A.L.
et al. (
2021
)
Insights from invasive cardiopulmonary exercise testing of patients with myalgic encephalomyelitis/chronic fatigue syndrome
.
Chest
160
,
642
651
97
Rowe
,
P.C.
,
Underhill
,
R.A.
,
Friedman
,
K.J.
,
Gurwitt
,
A.
,
Medow
,
M.S.
,
Schwartz
,
M.S.
et al. (
2017
)
Myalgic encephalomyelitis/chronic fatigue syndrome diagnosis and management in young people: a primer
.
Front. Pediatr.
5
,
121
98
Deumer
,
U.S.
,
Varesi
,
A.
,
Floris
,
V.
,
Savioli
,
G.
,
Mantovani
,
E.
,
Lopez-Carrasco
,
P.
et al. (
2021
)
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): an overview
.
J. Clin. Med
10
,
4786
99
Karaarslan
,
F.
,
Demircioğlu Guneri
,
F.
and
Kardeş
,
S.
(
2022
)
long COVID: rheumatologic/musculoskeletal symptoms in hospitalized COVID-19 survivors at 3 and 6 months
.
Clin. Rheumatol.
41
,
289
296
100
Ebringer
,
A.
,
Khalafpour
,
S.
and
Wilson
,
C.
(
1989
)
Rheumatoid arthritis and Proteus: a possible aetiological association
.
Rheumatol. Int.
9
,
223
228
101
Ebringer
,
A.
and
Wilson
,
C.
(
2000
)
HLA molecules, bacteria and autoimmunity
.
J. Med. Microbiol.
49
,
305
311
102
Ebringer
,
A.
and
Rashid
,
T.
(
2009
)
Rheumatoid arthritis is caused by Proteus: the molecular mimicry theory and Karl Popper
.
Front. Biosci. (Elite Ed.)
1
,
577
586
103
Ebringer
,
A.
,
Rashid
,
T.
and
Wilson
,
C.
(
2010
)
Rheumatoid arthritis, proteus, anti-CCP antibodies and Karl Popper
.
Autoimmun. Rev.
9
,
216
223
104
Ebringer
,
A.
(
2012
)
Rheumatoid arthritis and Proteus
,
Springer
,
London
105
Ebringer
,
A.
and
Rashid
,
T.
(
2014
)
Rheumatoid arthritis is caused by a Proteus urinary tract infection
.
APMIS
122
,
363
368
106
Kell
,
D.B.
(
2009
)
Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases
.
BMC Med. Genom.
2
,
2
107
Hung
,
T.H.
,
Skepper
,
J.N.
and
Burton
,
G.J.
(
2001
)
In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies
.
Am. J. Pathol.
159
,
1031
1043
108
Hung
,
T.H.
,
Charnock-Jones
,
D.S.
,
Skepper
,
J.N.
and
Burton
,
G.J.
(
2004
)
Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia
.
Am. J. Pathol.
164
,
1049
1061
109
Kell
,
D.B.
and
Kenny
,
L.C.
(
2016
)
A dormant microbial component in the development of pre-eclampsia
.
Front. Med. Obs. Gynecol.
3
,
60
110
Kenny
,
L.C.
and
Kell
,
D.B.
(
2018
)
Immunological tolerance, pregnancy and pre-eclampsia: the roles of semen microbes and the father
.
Front. Med. Obs. Gynecol.
4
,
239
111
Jayaram
,
A.
,
Buhimschi
,
I.A.
,
Aldasoqi
,
H.
,
Hartwig
,
J.
,
Owens
,
T.
,
Elam
,
G.L.
et al. (
2021
)
Who said differentiating preeclampsia from COVID-19 infection was easy?
Pregnancy Hypertens.
26
,
8
10
112
Mendoza
,
M.
,
Garcia-Ruiz
,
I.
,
Maiz
,
N.
,
Rodo
,
C.
,
Garcia-Manau
,
P.
,
Serrano
,
B.
et al. (
2020
)
Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study
.
BJOG
127
,
1374
1380
113
Lanz
,
T.V.
,
Brewer
,
R.C.
,
Ho
,
P.P.
,
Moon
,
J.S.
,
Jude
,
K.M.
,
Fernandez
,
D.
et al. (
2022
)
Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM
.
Nature
603
,
321
327
114
Wekerle
,
H.
(
2022
)
Epstein-Barr virus sparks brain autoimmunity in multiple sclerosis
.
Nature
603
,
230
232
115
Mullard
,
A.
(
2022
)
The quest to prevent MS - and understand other post-viral diseases
.
Nature
603
,
784
786
116
O'Hagan
,
S.
,
Wright Muelas
,
M.
,
Day
,
P.J.
,
Lundberg
,
E.
and
Kell
,
D.B.
(
2018
)
Genegini: assessment via the Gini coefficient of reference ‘‘housekeeping’’ genes and diverse human transporter expression profiles
.
Cell Syst.
6
,
230
244
117
Wright Muelas
,
M.
,
Mughal
,
F.
,
O'Hagan
,
S.
,
Day
,
P.J.
and
Kell
,
D.B.
(
2019
)
The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data scientific reports
.
Sci. Rep.
9
,
17960
118
Deinhardt-Emmer
,
S.
,
Wittschieber
,
D.
,
Sanft
,
J.
,
Kleemann
,
S.
,
Elschner
,
S.
,
Haupt
,
K.F.
et al. (
2021
)
Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage
.
eLife
10
,
e60361
119
Jackson
,
C.B.
,
Farzan
,
M.
,
Chen
,
B.
and
Choe
,
H.
(
2022
)
Mechanisms of SARS-CoV-2 entry into cells
.
Nat. Rev. Mol. Cell Biol.
23
,
3
20
120
Baig
,
A.M.
,
Khaleeq
,
A.
,
Ali
,
U.
and
Syeda
,
H.
(
2020
)
Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms
.
ACS Chem. Neurosci.
11
,
995
998
121
Shen
,
X.R.
,
Geng
,
R.
,
Li
,
Q.
,
Chen
,
Y.
,
Li
,
S.F.
,
Wang
,
Q.
et al. (
2022
)
ACE2-independent infection of T lymphocytes by SARS-CoV-2
.
Signal. Transduct. Target. Ther.
7
,
83
122
Cheung
,
C.C.L.
,
Goh
,
D.
,
Lim
,
X.
,
Tien
,
T.Z.
,
Lim
,
J.C.T.
,
Lee
,
J.N.
et al. (
2022
)
Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19
.
Gut
71
,
226
229
123
Palsson
,
. (
2006
)
Systems biology: properties of reconstructed networks
,
Cambridge University Press
,
Cambridge
124
Klipp
,
E.
,
Herwig
,
R.
,
Kowald
,
A.
,
Wierling
,
C.
and
Lehrach
,
H.
(
2005
)
Systems biology in practice: concepts, implementation and clinical application
,
Wiley/VCH
,
Berlin
125
Kell
,
D.B.
and
Knowles
,
J.D
. (
2006
) The role of modeling in systems biology. In
System Modeling In Cellular Biology: From Concepts to Nuts And Bolts
(
Szallasi
,
Z.
,
Stelling
,
J.
and
Periwal
,
V.
, eds), pp.
3
18
,
MIT Press
,
Cambridge
126
Alon
,
U.
(
2006
)
An introduction to systems biology: design principles of biological circuits
,
Chapman and Hall/CRC
,
London
127
Babior
,
B.M.
(
2000
)
Phagocytes and oxidative stress
.
Am. J. Med.
109
,
33
44
128
Cave
,
A.C.
,
Brewer
,
A.C.
,
Narayanapanicker
,
A.
,
Ray
,
R.
,
Grieve
,
D.J.
,
Walker
,
S.
et al. (
2006
)
NADPH oxidases in cardiovascular health and disease
.
Antioxid. Redox Signal.
8
,
691
728
129
Bedard
,
K.
and
Krause
,
K.H.
(
2007
)
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology
.
Physiol. Rev.
87
,
245
313
130
Brown
,
J.M.
,
Terada
,
L.S.
,
Grosso
,
M.A.
,
Whitmann
,
G.J.
,
Velasco
,
S.E.
,
Patt
,
A.
et al. (
1988
)
Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts
.
J. Clin. Invest.
81
,
1297
1301
131
Granger
,
D.N.
(
1988
)
Role of xanthine oxidase and granulocytes in ischemia reperfusion injury
.
Am. J. Physiol.
255
,
H1269
H1275
132
Linas
,
S.L.
,
Whittenburg
,
D.
and
Repine
,
J.E.
(
1990
)
Role of xanthine oxidase in ischemia reperfusion injury
.
Am. J. Physiol.
258
,
F711
F716
133
Thompson-Gorman
,
S.L.
and
Zweier
,
J.L.
(
1990
)
Evaluation of the role of xanthine oxidase in myocardial reperfusion injury
.
J. Biol. Chem.
265
,
6656
6663
134
Adkins
,
W.K.
and
Taylor
,
A.E.
(
1990
)
Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung
.
J. Appl. Physiol.
69
,
2012
2018
135
Müller
,
M.J.
,
Vollmar
,
B.
,
Friedl
,
H.P.
and
Menger
,
M.D.
(
1996
)
Xanthine oxidase and superoxide radicals in portal triad crossclamping-induced microvascular reperfusion injury of the liver
.
Free Rad. Biol. Med.
21
,
189
197
136
Fridovich
,
I.
(
1995
)
Superoxide radical and superoxide dismutases
.
Annu. Rev. Biochem.
64
,
97
112
137
Wardman
,
P.
and
Candeias
,
L.P.
(
1996
)
Fenton chemistry: an introduction
.
Rad. Res.
145
,
523
531
138
Kehrer
,
J.P.
(
2000
)
The Haber-Weiss reaction and mechanisms of toxicity
.
Toxicology
149
,
43
50
139
Koppenol
,
W.H.
(
2001
)
The Haber-Weiss cycle--70 years later
.
Redox Rep.
6
,
229
234
140
Hershko
,
C.
and
Weatherall
,
D.J.
(
1988
)
Iron-chelating therapy
.
Crit. Rev. Clin. Lab. Sci.
26
,
303
345
141
Hininger
,
I.
,
Waters
,
R.
,
Osman
,
M.
,
Garrel
,
C.
,
Fernholz
,
K.
,
Roussel
,
A.M.
et al. (
2005
)
Acute prooxidant effects of vitamin C in EDTA chelation therapy and long-term antioxidant benefits of therapy
.
Free Rad. Biol. Med.
38
,
1565
1570
142
Miller
, III,
E.R.
,
Pastor-Barriuso
,
R.
,
Dalal
,
D.
,
Riemersma
,
R.A.
,
Appel
,
L.J.
and
Guallar
,
E.
(
2005
)
Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality
.
Ann. Intern. Med.
142
,
37
46
143
Bjelakovic
,
G.
,
Nikolova
,
D.
,
Gluud
,
L.L.
,
Simonetti
,
R.G.
and
Gluud
,
C.
(
2008
)
Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases
.
Cochrane Database Syst. Rev.
2008
,
CD007176
144
Feierman
,
D.E.
and
Cederbaum
,
A.I.
(
1983
)
The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes
.
Biochem. Biophys. Res. Commun.
116
,
765
770
145
Graf
,
E.
,
Mahoney
,
J.R.
,
Bryant
,
R.G.
and
Eaton
,
J.W.
(
1984
)
Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site
.
J. Biol. Chem.
259
,
3620
3624
146
Uchida
,
K.
,
Enomoto
,
N.
,
Itakura
,
K.
and
Kawakishi
,
S.
(
1989
)
The hydroxyl radical generated by an iron(II)/EDTA/ascorbate system preferentially attacks tryptophan residues of the protein
.
Agr. Biol. Chem.
53
,
3285
3292
147
Miller
,
C.J.
,
Rose
,
A.L.
and
Waite
,
T.D.
(
2016
)
Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH
.
Front. Mar. Sci.
3
,
134
148
Smith
,
J.K.
,
Carden
,
D.L.
,
Grisham
,
M.B.
,
Granger
,
D.N.
and
Korthuis
,
R.J.
(
1989
)
Role of iron in postischemic microvascular injury
.
Am. J. Physiol.
256
,
H1472
H1477
149
Kell
,
D.B.
and
Pretorius
,
E.
(
2014
)
Serum ferritin is an important disease marker, and is mainly a leakage product from damaged cells
.
Metallomics
6
,
748
773
150
Matin
,
A.
,
Auger
,
E.A.
,
Blum
,
P.H.
and
Schultz
,
J.E.
(
1989
)
Genetic basis of starvation survival in nondifferentiating bacteria
.
Annu. Rev. Microbiol.
43
,
293
316
151
Morita
,
R.Y.
(
1988
)
Bioavailability of energy and its relationship to growth and starvation survival in nature
.
Can. J. Microbiol.
34
,
346
441
152
Thorsen
,
B.K.
,
Enger
,
Ø
,
Norland
,
S.
and
Hoff
,
K.A.
(
1992
)
Long-term starvation survival of Yersinia ruckeri at different salinities studied by microscopical and flow cytometric methods
.
Appl. Environ. Microbiol.
58
,
1624
1628
153
Bergkessel
,
M.
and
Delavaine
,
L.
(
2021
)
Diversity in starvation survival strategies and outcomes among heterotrophic proteobacteria
.
Microb. Physiol.
31
,
146
162
154
Kaprelyants
,
A.S.
,
Gottschal
,
J.C.
and
Kell
,
D.B.
(
1993
)
Dormancy in non-sporulating bacteria
.
FEMS Microbiol. Rev.
10
,
271
286
155
Kell
,
D.B.
,
Kaprelyants
,
A.S.
,
Weichart
,
D.H.
,
Harwood
,
C.L.
and
Barer
,
M.R.
(
1998
)
Viability and activity in readily culturable bacteria: a review and discussion of the practical issues
.
Antonie Leeuwenhoek
73
,
169
187
156
Mukamolova
,
G.V.
,
Kaprelyants
,
A.S.
,
Young
,
D.I.
,
Young
,
M.
and
Kell
,
D.B.
(
1998
)
A bacterial cytokine
.
Proc. Natl Acad. Sci. U.S.A.
95
,
8916
8921
157
Mukamolova
,
G.V.
,
Yanopolskaya
,
N.D.
,
Kell
,
D.B.
and
Kaprelyants
,
A.S.
(
1998
)
On resuscitation from the dormant state of Micrococcus luteus
.
Antonie Leeuwenhoek
73
,
237
243
158
Shleeva
,
M.
,
Goncharenko
,
A.
,
Kudykina
,
Y.
,
Young
,
D.
,
Young
,
M.
and
Kaprelyants
,
A.
(
2013
)
Cyclic AMP-dependent resuscitation of dormant mycobacteria by exogenous free fatty acids
.
PLoS One
8
,
e82914
159
Nikitushkin
,
V.D.
,
Demina
,
G.R.
,
Shleeva
,
M.O.
,
Guryanova
,
S.V.
,
Ruggiero
,
A.
,
Berisio
,
R.
et al. (
2015
)
A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria
.
FEBS J.
282
,
2500
2511
160
Houben
,
R.M.G.J.
and
Dodd
,
P.J.
(
2016
)
The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling
.
PLoS Med.
13
,
e1002152
161
Knight
,
G.M.
,
McQuaid
,
C.F.
,
Dodd
,
P.J.
and
Houben
,
R.
(
2019
)
Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling
.
Lancet Infect. Dis.
19
,
903
912
162
Reshetnyak
,
V.I.
and
Reshetnyak
,
T.M.
(
2017
)
Significance of dormant forms of Helicobacter pylori in ulcerogenesis
.
World J. Gastroenterol.
23
,
4867
4878
163
Li
,
J.
and
Perez-Perez
,
G.I.
(
2018
)
Helicobacter pylori the latent human pathogen or an ancestral commensal organism
.
Front. Microbiol.
9
,
609
164
Lewis
,
K.
(
2010
)
Persister cells
.
Annu. Rev. Microbiol.
64
,
357
372
165
Zhang
,
Y.
,
Yew
,
W.W.
and
Barer
,
M.R.
(
2012
)
Targeting persisters for tuberculosis control
.
Antimicrob. Agents Chemother.
56
,
2223
2230
166
Wood
,
T.K.
,
Knabel
,
S.J.
and
Kwan
,
B.W.
(
2013
)
Bacterial persister cell formation and dormancy
.
Appl. Environ. Microbiol.
79
,
7116
7121
167
Holden
,
D.W.
(
2015
)
Persisters unmasked
.
Science
347
,
30
32
168
Kell
,
D.B.
,
Potgieter
,
M.
and
Pretorius
,
E.
(
2015
)
Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology
.
F1000Research
4
,
179
169
Rowe
,
S.E.
,
Conlon
,
B.P.
,
Keren
,
I.
and
Lewis
,
K.
(
2016
)
Persisters: methods for isolation and identifying contributing factors--a review
.
Methods Mol. Biol.
1333
,
17
28
170
Fisher
,
R.A.
,
Gollan
,
B.
and
Helaine
,
S.
(
2017
)
Persistent bacterial infections and persister cells
.
Nat. Rev. Microbiol.
15
,
453
464
171
Van den Bergh
,
B.
,
Fauvart
,
M.
and
and Michiels
,
J.
(
2017
)
Formation, physiology, ecology, evolution and clinical importance of bacterial persisters
.
FEMS Microbiol. Rev.
41
,
219
251
172
Salcedo-Sora
,
J.E.
and
Kell
,
D.B.
(
2020
)
A quantitative survey of bacterial persistence in the presence of antibiotics: towards antipersister antimicrobial discovery
.
Antibiotics
9
,
508
173
Song
,
S.
and
Wood
,
T.K.
(
2020
)
Persister cells resuscitate via ribosome modification by 23S rRNA pseudouridine synthase RluD
.
Environ. Microbiol.
22
,
850
857
174
Yamasaki
,
R.
,
Song
,
S.
,
Benedik
,
M.J.
and
Wood
,
T.K.
(
2020
)
Persister cells resuscitate using membrane sensors that activate chemotaxis, lower cAMP levels, and revive ribosomes
.
iScience
23
,
100792
175
Antonelli
,
G.
and
Cutler
,
S.
(
2016
)
Evolution of the Koch postulates: towards a 21st-century understanding of microbial infection
.
Clin Microbiol Infect.
22
,
583
584
176
Byrd
,
A.L.
and
Segre
,
J.A.
(
2016
)
Adapting Koch's postulates
.
Science
351
,
224
226
177
Falkow
,
S.
(
1988
)
Molecular Koch's postulates applied to microbial pathogenicity
.
Rev. Infect. Dis.
10
,
S274
S276
178
Falkow
,
S.
(
2004
)
Molecular Koch's postulates applied to bacterial pathogenicity - a personal recollection 15 years later
.
Nat. Rev. Microbiol.
2
,
67
72
179
Fredricks
,
D.N.
and
Relman
,
D.A.
(
1996
)
Sequence-based identification of microbial pathogens - a reconsideration of Koch's postulates
.
Clin. Micr. Rev.
9
,
18
33
180
Lowe
,
A.M.
,
Yansouni
,
C.P.
and
Behr
,
M.A.
(
2008
)
Causality and gastrointestinal infections: Koch, Hill, and Crohn's
.
Lancet Infect. Dis.
8
,
720
726
181
Miklossy
,
J.
(
2011
)
Alzheimer's disease - a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria
.
J. Neuroinflammation
8
,
90
182
Segre
,
J.A.
(
2013
)
What does it take to satisfy Koch's postulates two centuries later? Microbial genomics and Propionibacteria acnes
.
J. Investig. Dermatol.
133
,
2141
2142
183
Castillo
,
D.J.
,
Rifkin
,
R.F.
,
Cowan
,
D.A.
and
Potgieter
,
M.
(
2019
)
The healthy human blood microbiome: fact or fiction?
Front. Cell. Infect. Microbiol.
9
,
148
184
Damgaard
,
C.
,
Magnussen
,
K.
,
Enevold
,
C.
,
Nilsson
,
M.
,
Tolker-Nielsen
,
T.
,
Holmstrup
,
P.
et al. (
2015
)
Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations
.
PLoS One
10
,
e0120826
185
Damgaard
,
C.
,
Saekmose
,
S.G.
,
Nilsson
,
M.
,
Kilian
,
M.
,
Nielsen
,
C.H.
and
Holmstrup
,
P.
(
2021
)
Periodontitis increases risk of viable bacteria in freshly drawn blood donations
.
Blood Transfus.
19
,
376
383
186
Kowarsky
,
M.
,
Camunas-Soler
,
J.
,
Kertesz
,
M.
,
De Vlaminck
,
I.
,
Koh
,
W.
,
Pan
,
W.
et al. (
2017
)
Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA
.
Proc. Natl Acad. Sci. U.S.A.
114
,
9623
9628
187
Panaiotov
,
S.
,
Filevski
,
G.
,
Equestre
,
M.
,
Nikolova
,
E.
and
Kalfin
,
R.
(
2018
)
Cultural isolation and characteristics of the blood microbiome of healthy individuals
.
Adv. Microbiol.
8
,
406
421
188
Loohuis
,
O.
,
Mangul
,
L.M.
,
Ori
,
S.
,
Jospin
,
A.P.S.
,
Koslicki
,
G.
,
Yang
,
D.
et al. (
2018
)
Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia
.
Transl. Psychiatry
8
,
96
189
Potgieter
,
M.
,
Bester
,
J.
,
Kell
,
D.B.
and
Pretorius
,
E.
(
2015
)
The dormant blood microbiome in chronic, inflammatory diseases
.
FEMS Microbiol. Rev.
39
,
567
591
190
Thwaites
,
G.E.
and
Gant
,
V.
(
2011
)
Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?
Nat. Rev. Microbiol.
9
,
215
222
191
Joura
,
M.I.
,
Brunner
,
A.
,
Nemes-Nikodém
,
É
,
Sárdy
,
M.
and
Ostorházi
,
E.
(
2021
)
Interactions between immune system and the microbiome of skin, blood and gut in pathogenesis of rosacea
.
Acta Microbiol. Immunol. Hung.
68
,
1
6
192
D'Aquila
,
P.
,
Giacconi
,
R.
,
Malavolta
,
M.
,
Piacenza
,
F.
,
Burkle
,
A.
,
Villanueva
,
M.M.
et al. (
2021
)
Microbiome in blood samples from the general population recruited in the MARK-AGE project: a pilot study
.
Front. Microbiol.
12
,
707515
193
Emery
,
D.C.
,
Cerajewska
,
T.L.
,
Seong
,
J.
,
Davies
,
M.
,
Paterson
,
A.
,
Allen-Birt
,
S.J.
et al. (
2020
)
Comparison of blood bacterial communities in periodontal health and periodontal disease
.
Front. Cell. Infect. Microbiol.
10
,
577485
194
Aagaard
,
K.
,
Ma
,
J.
,
Antony
,
K.M.
,
Ganu
,
R.
,
Petrosino
,
J.
and
Versalovic
,
J.
(
2014
)
The placenta harbors a unique microbiome
.
Sci. Transl. Med.
6
,
237ra265
195
Mysorekar
,
I.U.
and
Hultgren
,
S.J.
(
2006
)
Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract
.
Proc. Natl Acad. Sci. U.S.A.
103
,
14170
14175
196
Rosen
,
D.A.
,
Hooton
,
T.M.
,
Stamm
,
W.E.
,
Humphrey
,
P.A.
and
Hultgren
,
S.J.
(
2007
)
Detection of intracellular bacterial communities in human urinary tract infection
.
PLoS Med.
4
,
e329
197
Casadevall
,
A.
(
2008
)
Evolution of intracellular pathogens
.
Annu. Rev. Microbiol.
62
,
19
33
198
Shin
,
S.
and
Roy
,
C.R.
(
2008
)
Host cell processes that influence the intracellular survival of Legionella pneumophila
.
Cell Microbiol.
10
,
1209
1220
199
Hunstad
,
D.A.
and
Justice
,
S.S.
(
2010
)
Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli
.
Annu. Rev. Microbiol.
64
,
203
221
200
Martirosyan
,
A.
,
Moreno
,
E.
and
Gorvel
,
J.P.
(
2011
)
An evolutionary strategy for a stealthy intracellular Brucella pathogen
.
Immunol. Rev.
240
,
211
234
201
Fraunholz
,
M.
and
Sinha
,
B.
(
2012
)
Intracellular Staphylococcus aureus: live-in and let die
.
Front. Cell. Infect. Microbiol.
2
,
43
202
Silva
,
M.T.
(
2012
)
Classical labeling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives
.
Front. Microbiol.
3
,
71
203
Amano
,
A.
and
Furuta
,
N.
(
2012
)
Cell entry and exit by periodontal pathogen Porphyromonas gingivalis
.
J. Oral Biosci.
54
,
54
57
204
Kozarov
,
E.
(
2012
)
Bacterial invasion of vascular cell types: vascular infectology and atherogenesis
.
Future Cardiol.
8
,
123
138
205
Pulliainen
,
A.T.
and
Dehio
,
C.
(
2012
)
Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation
.
FEMS Microbiol. Rev.
36
,
563
599
206
von Bargen
,
K.
,
Gorvel
,
J.P.
and
Salcedo
,
S.P.
(
2012
)
Internal affairs: investigating the Brucella intracellular lifestyle
.
FEMS Microbiol. Rev.
36
,
533
562
207
Horsley
,
H.
,
Malone-Lee
,
J.
,
Holland
,
D.
,
Tuz
,
M.
,
Hibbert
,
A.
,
Kelsey
,
M.
et al. (
2013
)
Enterococcus faecalis subverts and invades the host urothelium in patients with chronic urinary tract infection
.
PLoS One
8
,
e83637
208
Silva
,
M.T.
and
Pestana
,
N.T.
(
2013
)
The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis
.
Immunobiology
218
,
325
337
209
Blango
,
M.G.
,
Ott
,
E.M.
,
Erman
,
A.
,
Veranic
,
P.
and
Mulvey
,
M.A.
(
2014
)
Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs
.
PLos One
9
,
e93327
210
Buchacher
,
T.
,
Wiesinger-Mayr
,
H.
,
Vierlinger
,
K.
,
Ruger
,
B.M.
,
Stanek
,
G.
,
Fischer
,
M.B.
et al. (
2014
)
Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae
.
BMC Immunol.
15
,
60
211
Flores-Mireles
,
A.L.
,
Walker
,
J.N.
,
Caparon
,
M.
and
Hultgren
,
S.J.
(
2015
)
Urinary tract infections: epidemiology, mechanisms of infection and treatment options
.
Nat. Rev. Microbiol.
13
,
269
284
212
Knodler
,
L.A.
(
2015
)
Salmonella enterica: living a double life in epithelial cells
.
Curr. Opin. Microbiol.
23C
,
23
31
213
Reniere
,
M.L.
,
Whiteley
,
A.T.
,
Hamilton
,
K.L.
,
John
,
S.M.
,
Lauer
,
P.
,
Brennan
,
R.G.
et al. (
2015
)
Glutathione activates virulence gene expression of an intracellular pathogen
.
Nature
517
,
170
173
214
Ribet
,
D.
and
Cossart
,
P.
(
2015
)
How bacterial pathogens colonize their hosts and invade deeper tissues
.
Microbes Infect.
17
,
173
183
215
Leatham-Jensen
,
M.P.
,
Mokszycki
,
M.E.
,
Rowley
,
D.C.
,
Deering
,
R.
,
Camberg
,
J.L.
,
Sokurenko
,
E.V.
et al. (
2016
)
Uropathogenic Escherichia coli metabolite-dependent quiescence and persistence may explain antibiotic tolerance during urinary tract infection
.
mSphere
1
,
e00055-15
216
Kortebi
,
M.
,
Milohanic
,
E.
,
Mitchell
,
G.
,
Péchoux
,
C.
,
Prevost
,
M.C.
,
Cossart
,
P.
et al. (
2017
)
Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells
.
PLoS Pathog.
13
,
e1006734
217
McClure
,
E.E.
,
Chavez
,
A.S.O.
,
Shaw
,
D.K.
,
Carlyon
,
J.A.
,
Ganta
,
R.R.
,
Noh
,
S.M.
et al. (
2017
)
Engineering of obligate intracellular bacteria: progress, challenges and paradigms
.
Nat. Rev. Microbiol.
15
,
544
558
218
Pucciarelli
,
M.G.
and
García-Del Portillo
,
F.
(
2017
)
Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission
.
Microbiol. Spectr.
5
,
1
18
219
Kim
,
W.J.
,
Shea
,
A.E.
,
Kim
,
J.H.
and
Daaka
,
Y.
(
2018
)
Uropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells
.
J. Biol. Chem.
293
,
16518
16527
220
Proal
,
A.
and
Marshall
,
T.
(
2018
)
Myalgic encephalomyelitis/chronic fatigue syndrome in the era of the human microbiome: persistent pathogens drive chronic symptoms by interfering with host metabolism, gene expression, and immunity
.
Front. Pediatr.
6
,
373
221
Forrester
,
J.V.
,
McMenamin
,
P.G.
and
Dando
,
S.J.
(
2018
)
CNS infection and immune privilege
.
Nat. Rev. Neurosci.
19
,
655
671
222
Proal
,
A.D.
and
VanElzakker
,
M.B.
(
2021
)
Pathogens hijack host cell metabolism: intracellular infection as a driver of the Warburg effect in cancer and other chronic inflammatory conditions
.
Immunometabolism
3
,
e210003
223
O'Neal
,
A.J.
and
Hanson
,
M.R.
(
2021
)
The enterovirus theory of disease etiology in myalgic encephalomyelitis/chronic fatigue syndrome: a critical review
.
Front. Med. (Lausanne)
8
,
688486
224
Speck
,
S.H.
and
Ganem
,
D.
(
2010
)
Viral latency and its regulation: lessons from the gamma-herpesviruses
.
Cell Host Microbe
8
,
100
115
225
Traylen
,
C.M.
,
Patel
,
H.R.
,
Fondaw
,
W.
,
Mahatme
,
S.
,
Williams
,
J.F.
,
Walker
,
L.R.
et al. (
2011
)
Virus reactivation: a panoramic view in human infections
.
Future Virol.
6
,
451
463
226
Grinde
,
B.
(
2013
)
Herpesviruses: latency and reactivation - viral strategies and host response
.
J. Oral Microbiol.
5
.
227
Le
,
P.
and
Rothberg
,
M.
(
2019
)
Herpes zoster infection
.
BMJ
364
,
k5095
228
Itzhaki
,
R.F.
,
Lathe
,
R.
,
Balin
,
B.J.
,
Ball
,
M.J.
,
Braak
,
H.
,
Bearer
,
E.L.
et al. (
2016
)
Microbes and Alzheimer's disease
.
J. Alzheimers Dis.
51
,
979
984
229
Itzhaki
,
R.F.
and
Lathe
,
R.
(
2018
)
Herpes viruses and senile dementia: first population evidence for a causal link
.
J. Alzheimers Dis.
64
,
363
366
230
Itzhaki
,
R.F.
(
2018
)
Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's disease
.
Front. Aging Neurosci.
10
,
324
231
Itzhaki
,
R.F.
,
Golde
,
T.E.
,
Heneka
,
M.T.
and
Readhead
,
B.
(
2020
)
Do infections have a role in the pathogenesis of Alzheimer disease?
Nat. Rev. Neurol.
16
,
193
197
232
Manicklal
,
S.
,
Emery
,
V.C.
,
Lazzarotto
,
T.
,
Boppana
,
S.B.
and
Gupta
,
R.K.
(
2013
)
The "silent" global burden of congenital cytomegalovirus
.
Clin. Microbiol. Rev.
26
,
86
102
233
Diggins
,
N.L.
and
Hancock
,
M.H.
(
2018
)
HCMV miRNA targets reveal important cellular pathways for viral replication, latency, and reactivation
.
Noncoding RNA
4
,
29
234
Jason
,
L.A.
,
Porter
,
N.
,
Herrington
,
J.
,
Sorenson
,
M.
and
Kubow
,
S.
(
2009
)
Kindling and oxidative stress as contributors to myalgic encephalomyelitis/chronic fatigue syndrome
.
J. Behav. Neurosci. Res.
7
,
1
17
https://pubmed.ncbi.nlm.nih.gov/21253446/
235
Chapenko
,
S.
,
Krumina
,
A.
,
Logina
,
I.
,
Rasa
,
S.
,
Chistjakovs
,
M.
,
Sultanova
,
A.
et al. (
2012
)
Association of active human herpesvirus-6, -7 and parvovirus b19 infection with clinical outcomes in patients with myalgic encephalomyelitis/chronic fatigue syndrome
.
Adv. Virol.
2012
,
205085
236
Shikova
,
E.
,
Reshkova
,
V.
,
Kumanova
,
А.
,
Raleva
,
S.
,
Alexandrova
,
D.
,
Capo
,
N.
et al. (
2020
)
Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in patients with myalgic small ie, cyrillicncephalomyelitis/chronic fatigue syndrome
.
J. Med. Virol.
92
,
3682
3688
237
Friedman
,
K.J.
,
Murovska
,
M.
,
Pheby
,
D.F.H.
and
Zalewski
,
P.
(
2021
)
Our evolving understanding of ME/CFS
.
Medicina (Kaunas)
57
,
200
238
Lee
,
J.S.
,
Lacerda
,
E.M.
,
Nacul
,
L.
,
Kingdon
,
C.C.
,
Norris
,
J.
,
O'Boyle
,
S.
et al. (
2021
)
Salivary DNA loads for human herpesviruses 6 and 7 are correlated with disease phenotype in myalgic encephalomyelitis/Chronic fatigue syndrome
.
Front. Med. (Lausanne)
8
,
656692
239
Ruiz-Pablos
,
M.
,
Paiva
,
B.
,
Montero-Mateo
,
R.
,
Garcia
,
N.
and
Zabaleta
,
A.
(
2021
)
Epstein-Barr virus and the origin of myalgic encephalomyelitis or chronic fatigue syndrome
.
Front. Immunol.
12
,
656797
240
Liu
,
T.
,
Khanna
,
K.M.
,
Carriere
,
B.N.
and
Hendricks
,
R.L.
(
2001
)
Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons
.
J. Virol.
75
,
11178
11184
241
Katze
,
M.G.
,
He
,
Y.
and
Gale
, Jr.,
M.
(
2002
)
Viruses and interferon: a fight for supremacy
.
Nat. Rev. Immunol.
2
,
675
687
242
Haller
,
O.
,
Kochs
,
G.
and
Weber
,
F.
(
2006
)
The interferon response circuit: induction and suppression by pathogenic viruses
.
Virology
344
,
119
130
243
Decman
,
V.
,
Kinchington
,
P.R.
,
Harvey
,
S.A.
and
Hendricks
,
R.L.
(
2005
)
Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression
.
J. Virol.
79
,
10339
10347
244
Kang
,
S.
,
Brown
,
H.M.
and
Hwang
,
S.
(
2018
)
Direct antiviral mechanisms of interferon-gamma
.
Immune Netw.
18
,
e33
245
Van der Sluis
,
R.M.
,
Zerbato
,
J.M.
,
Rhodes
,
J.W.
,
Pascoe
,
R.D.
,
Solomon
,
A.
,
Kumar
,
N.A.
et al. (
2020
)
Diverse effects of interferon alpha on the establishment and reversal of HIV latency
.
PLoS Pathog.
16
,
e1008151
246
Schuhenn
,
J.
,
Meister
,
T.L.
,
Todt
,
D.
,
Bracht
,
T.
,
Schork
,
K.
,
Billaud
,
J.N.
et al. (
2022
)
Differential interferon-alpha subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection
.
Proc. Natl Acad. Sci. U.S.A.
119
,
e2111600119
247
Weber
,
F.
and
Haller
,
O.
(
2007
)
Viral suppression of the interferon system
.
Biochimie
89
,
836
842
248
García-Sastre
,
A.
(
2017
)
Ten strategies of interferon evasion by viruses
.
Cell Host Microbe
22
,
176
184
249
Rojas
,
J.M.
,
Alejo
,
A.
,
Martin
,
V.
and
Sevilla
,
N.
(
2021
)
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway
.
Cell. Mol. Life Sci.
78
,
1423
1444
250
Lei
,
X.
,
Dong
,
X.
,
Ma
,
R.
,
Wang
,
W.
,
Xiao
,
X.
,
Tian
,
Z.
et al. (
2020
)
Activation and evasion of type I interferon responses by SARS-CoV-2
.
Nat. Commun.
11
,
3810
251
Triantafyllidis
,
K.
,
Giannos
,
K.
,
Mian
,
P.
,
Kyrtsonis
,
I.T.
,
and Kechagias
,
G.
and
S
,
K.
(
2021
)
Varicella zoster virus reactivation following COVID-19 vaccination: a systematic review of case reports
.
Vaccines (Basel)
9
,
1013
252
Maldonado
,
M.D.
and
Romero-Aibar
,
J.
(
2021
)
The Pfizer-BNT162b2 mRNA-based vaccine against SARS-CoV-2 may be responsible for awakening the latency of herpes varicella-zoster virus
.
Brain Behav. Immun. Health
18
,
100381
253
Psichogiou
,
M.
,
Samarkos
,
M.
,
Mikos
,
N.
and
Hatzakis
,
A.
(
2021
)
Reactivation of varicella zoster virus after vaccination for SARS-CoV-2
.
Vaccines (Basel)
9
,
572
254
Posey
,
J.E.
and
Gherardini
,
F.C.
(
2000
)
Lack of a role for iron in the Lyme disease pathogen
.
Science
288
,
1651
1653
255
Armitage
,
A.E.
and
Drakesmith
,
H.
(
2014
)
The battle for iron
.
Science
346
,
1299
1300
256
Carver
,
P.L.
(
2018
)
The battle for iron between humans and microbes
.
Curr. Med. Chem.
18
,
25
36
257
Haley
,
K.P.
and
Skaar
,
E.P.
(
2012
)
A battle for iron: host sequestration and Staphylococcus aureus acquisition
.
Microbes Infect.
14
,
217
227
258
McDermid
,
J.M.
and
Prentice
,
A.M.
(
2006
)
Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMP1 (SLC11A1) on host-pathogen interactions in tuberculosis and HIV
.
Clin. Sci. (Lond.)
110
,
503
524
259
Miethke
,
M.
(
2013
)
Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems
.
Metallomics
5
,
15
28
260
Segond
,
D.
,
Abi Khalil
,
E.
,
Buisson
,
C.
,
Daou
,
N.
,
Kallassy
,
M.
,
Lereclus
,
D.
et al. (
2014
)
Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization
.
PLoS Pathog.
10
,
e1003935
261
Nairz
,
M.
,
Schroll
,
A.
,
Sonnweber
,
T.
and
Weiss
,
G.
(
2010
)
The struggle for iron - a metal at the host-pathogen interface
.
Cell Microbiol.
12
,
1691
1702
262
Skaar
,
E.P.
(
2010
)
The battle for iron between bacterial pathogens and their vertebrate hosts
.
PLoS Pathog.
6
,
e1000949
263
Subashchandrabose
,
S.
and
Mobley
,
H.L.T.
(
2015
)
Back to the metal age: battle for metals at the host-pathogen interface during urinary tract infection
.
Metallomics
7
,
935
942
264
Do
,
J.
,
Zafar
,
H.
and
Saier
, Jr.,
M.H.
(
2017
)
Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains
.
Microb. Pathog.
107
,
106
115
265
Tang
,
F.
and
Saier
, Jr.,
M.H.
(
2014
)
Transport proteins promoting Escherichia coli pathogenesis
.
Microb. Pathog.
71–72
,
41
55
266
Kell
,
D.B.
(
2010
)
Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples
.
Arch. Toxicol.
577
,
825
889
267
Kell
,
D.B.
and
Pretorius
,
E.
(
2015
)
On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death
.
Integr. Biol.
7
,
1339
1377
268
Pretorius
,
E.
,
Page
,
M.J.
,
Hendricks
,
L.
,
Nkosi
,
N.B.
,
Benson
,
S.R.
and
Kell
,
D.B.
(
2018
)
Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: assessment with novel Amytracker™ stains
.
J. R. Soc. Interface
15
,
20170941
269
Ghiadoni
,
L.
,
Salvetti
,
M.
,
Muiesan
,
M.L.
and
Taddei
,
S.
(
2015
)
Evaluation of endothelial function by flow mediated dilation: methodological issues and clinical importance
.
High Blood Press. Cardiovasc. Prev.
22
,
17
22
270
Chia
,
P.Y.
,
Teo
,
A.
and
Yeo
,
T.W.
(
2020
)
Overview of the assessment of endothelial function in humans
.
Front. Med. (Lausanne)
7
,
542567
271
Dirican
,
A.
,
Ildir
,
S.
,
Uzar
,
T.
,
Karaman
,
I.
and
Ozkaya
,
S.
(
2021
)
The role of endotheliitis in COVID-19: real-world experience of 11 190 patients and literature review for a pathophysiological map to clinical categorisation
.
Int. J. Clin. Pract.
75
,
e14843
272
Huertas
,
A.
,
Montani
,
D.
,
Savale
,
L.
,
Pichon
,
J.
,
Tu
,
L.
,
Parent
,
F.
et al. (
2020
)
Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?
Eur. Respir. J.
56
,
2001634
273
Kirschenbaum
,
D.
,
Imbach
,
L.L.
,
Rushing
,
E.J.
,
Frauenknecht
,
K.B.M.
,
Gascho
,
D.
,
Ineichen
,
B.V.
et al. (
2021
)
Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19
.
Neuropathol. Appl. Neurobiol.
47
,
454
459
274
Lei
,
Y.Y.
,
Zhang
,
J.
,
Schiavon
,
C.R.
,
He
,
M.
,
Chen
,
L.L.
,
Shen
,
H.
et al. (
2021
)
SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2
.
Circ. Res.
128
,
1323
1326
275
Maccio
,
U.
,
Zinkernagel
,
A.S.
,
Shambat
,
S.M.
,
Zeng
,
X.
,
Cathomas
,
G.
,
Ruschitzka
,
F.
et al. (
2021
)
SARS-CoV-2 leads to a small vessel endotheliitis in the heart
.
EBioMedicine
63
,
103182
276
Teuwen
,
L.A.
,
Geldhof
,
V.
,
Pasut
,
A.
and
Carmeliet
,
P.
(
2020
)
COVID-19: the vasculature unleashed
.
Nat. Rev. Immunol.
20
,
389
391
277
Kaur
,
S.
,
Tripathi
,
D.M.
and
Yadav
,
A.
(
2020
)
The enigma of endothelium in COVID-19
.
Front. Physiol.
11
,
989
278
Varga
,
Z.
,
Flammer
,
A.J.
,
Steiger
,
P.
,
Haberecker
,
M.
,
Andermatt
,
R.
,
Zinkernagel
,
A.S.
et al. (
2020
)
Endothelial cell infection and endotheliitis in COVID-19
.
Lancet
395
,
1417
1418
279
Amersfoort
,
J.
,
Eelen
,
G.
and
Carmeliet
,
P.
(
2022
)
Immunomodulation by endothelial cells — partnering up with the immune system?
Nat. Rev. Immunol.
in press.
280
Ackermann
,
M.
,
Verleden
,
S.E.
,
Kuehnel
,
M.
,
Haverich
,
A.
,
Welte
,
T.
,
Laenger
,
F.
et al. (
2020
)
Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19.
N. Engl. J. Med.
383
,
120
128
281
Calabretta
,
E.
,
Moraleda
,
J.M.
,
Iacobelli
,
M.
,
Jara
,
R.
,
Vlodavsky
,
I.
,
O'Gorman
,
P.
et al. (
2021
)
COVID-19-induced endotheliitis: emerging evidence and possible therapeutic strategies
.
Br. J. Haematol.
193
,
43
51
282
Charfeddine
,
S.
,
Ibn Hadj Amor
,
H.
,
Jdidi
,
J.
,
Torjmen
,
S.
,
Kraiem
,
S.
,
Hammami
,
R.
et al. (
2021
)
Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study
.
Front. Cardiovasc. Med.
8
,
745758
283
Fogarty
,
H.
,
Townsend
,
L.
,
Morrin
,
H.
,
Ahmad
,
A.
,
Comerford
,
C.
,
Karampini
,
E.
et al. (
2021
)
Persistent endotheliopathy in the pathogenesis of long COVID syndrome
.
J. Thromb. Haemost.
19
,
2546
2553
284
Goshua
,
G.
,
Pine
,
A.B.
,
Meizlish
,
M.L.
,
Chang
,
C.H.
,
Zhang
,
H.
,
Bahel
,
P.
et al. (
2020
)
Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study
.
Lancet Haematol.
7
,
e575
e582
285
Altschul
,
D.J.
,
Unda
,
S.R.
,
de La Garza Ramos
,
R.
,
Zampolin
,
R.
,
Benton
,
J.
,
Holland
,
R.
et al. (
2020
)
Hemorrhagic presentations of COVID-19: risk factors for mortality
.
Clin. Neurol. Neurosurg.
198
,
106112
286
Iba
,
T.
,
Levy
,
J.H.
,
Levi
,
M.
and
Thachil
,
J.
(
2020
)
Coagulopathy in COVID-19
.
J. Thromb. Haemost.
18
,
2103
2109
287
Klok
,
F.A.
,
Kruip
,
M.
,
van der Meer
,
N.J.M.
,
Arbous
,
M.S.
,
Gommers
,
D.
,
Kant
,
K.M.
et al. (
2020
)
Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis
.
Thromb. Res.
191
,
148
150
288
Malas
,
M.B.
,
Naazie
,
I.N.
,
Elsayed
,
N.
,
Mathlouthi
,
A.
,
Marmor
,
R.
and
Clary
,
B.
(
2020
)
Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis
.
EClinicalMedicine
29
,
100639
289
Thachil
,
J.
,
Tang
,
N.
,
Gando
,
S.
,
Falanga
,
A.
,
Cattaneo
,
M.
,
Levi
,
M.
et al. (
2020
)
ISTH interim guidance on recognition and management of coagulopathy in COVID-19
.
J. Thromb. Haemost.
18
,
1023
1026
290
Gómez-Mesa
,
J.E.
,
Galindo-Coral
,
S.
,
Montes
,
M.C.
and
Muñoz Martin
,
A.J.
(
2021
)
Thrombosis and coagulopathy in COVID-19
.
Curr. Probl. Cardiol.
46
,
100742
291
Leentjens
,
J.
,
van Haaps
,
T.F.
,
Wessels
,
P.F.
,
Schutgens
,
R.E.G.
and
Middeldorp
,
S.
(
2021
)
COVID-19-associated coagulopathy and antithrombotic agents-lessons after 1 year
.
Lancet Haematol.
8
,
e524
e533
292
Lorini
,
F.L.
,
Di Matteo
,
M.
,
Gritti
,
P.
,
Grazioli
,
L.
,
Benigni
,
A.
,
Zacchetti
,
L.
et al. (
2021
)
Coagulopathy and COVID-19
.
Eur. Heart J. Suppl.
23
,
E95
E98
293
Polimeni
,
A.
,
Leo
,
I.
,
Spaccarotella
,
C.
,
Mongiardo
,
A.
,
Sorrentino
,
S.
,
Sabatino
,
J.
et al. (
2021
)
Differences in coagulopathy indices in patients with severe versus non-severe COVID-19: a meta-analysis of 35 studies and 6427 patients
.
Sci. Rep.
11
,
10464
294
Sarkar
,
M.
,
Madabhavi
,
I.V.
,
Quy
,
P.N.
and
Govindagoudar
,
M.B.
(
2021
)
COVID-19 and coagulopathy
.
Clin. Respir. J.
15
,
1259
1274
295
Vincent
,
J.L.
,
Levi
,
M.
and
Hunt
,
B.J.
(
2021
)
Prevention and management of thrombosis in hospitalised patients with COVID-19 pneumonia
.
Lancet Respir. Med.
10
,
214
220
296
Ortega-Paz
,
L.
,
Capodanno
,
D.
,
Montalescot
,
G.
and
Angiolillo
,
D.J.
(
2021
)
Coronavirus disease 2019-associated thrombosis and coagulopathy: review of the pathophysiological characteristics and implications for antithrombotic management
.
J. Am. Heart Assoc.
10
,
e019650
297
Wang
,
Z.
,
Gao
,
X.
,
Miao
,
H.
,
Ma
,
X.
and
Ding
,
R.
(
2021
)
Understanding COVID-19-associated coagulopathy: from PIC to SIC or DIC
.
J. Intensive Med.
1
,
35
41
298
Douillet
,
D.
,
Riou
,
J.
,
Penaloza
,
A.
,
Moumneh
,
T.
,
Soulie
,
C.
,
Savary
,
D.
et al. (
2021
)
Risk of symptomatic venous thromboembolism in mild and moderate COVID-19: a comparison of two prospective European cohorts
.
Thromb. Res.
208
,
4
10
299
Levi
,
M.
and
Thachil
,
J.
(
2020
)
Coronavirus disease 2019 coagulopathy: disseminated intravascular coagulation and thrombotic microangiopathy-either, neither, or both
.
Semin. Thromb. Hemost.
46
,
781
784
300
Thachil
,
J.
(
2021
)
Lessons learnt from COVID-19 coagulopathy
.
EJHaem
2
,
577
584
301
Venter
,
C.
,
Bezuidenhout
,
J.A.
,
Laubscher
,
G.J.
,
Lourens
,
P.J.
,
Steenkamp
,
J.
,
Kell
,
D.B.
et al. (
2020
)
Erythrocyte, platelet, serum ferritin and P-selectin pathophysiology implicated in severe hypercoagulation and vascular complications in COVID-19
.
Int. J. Mol. Sci.
21
,
8234
302
Fogarty
,
H.
,
Townsend
,
L.
,
Ni Cheallaigh
,
C.
,
Bergin
,
C.
,
Martin-Loeches
,
I.
,
Browne
,
P.
et al. (
2020
)
COVID19 coagulopathy in Caucasian patients
.
Br. J. Haematol.
189
,
1044
1049
303
Bray
,
M.A.
,
Sartain
,
S.E.
,
Gollamudi
,
J.
and
Rumbaut
,
R.E.
(
2020
)
Microvascular thrombosis: experimental and clinical implications
.
Transl. Res.
225
,
105
130
304
Levi
,
M.
,
Thachil
,
J.
,
Iba
,
T.
and
Levy
,
J.H.
(
2020
)
Coagulation abnormalities and thrombosis in patients with COVID-19
.
Lancet Haematol.
7
,
e438
e440
305
Willyard
,
C.
(
2020
)
Coronavirus blood-clot mystery intensifies
.
Nature
581
,
250
306
Pretorius
,
E.
,
Venter
,
C.
,
Laubscher
,
G.J.
,
Lourens
,
P.J.
,
Steenkamp
,
J.
and
Kell
,
D.B.
(
2020
)
Prevalence of amyloid blood clots in COVID-19 plasma
.
medRxiv
2020.2007.2028.20163543v20163541
307
Asakura
,
H.
and
Ogawa
,
H.
(
2021
)
COVID-19-associated coagulopathy and disseminated intravascular coagulation
.
Int. J. Hematol.
113
,
45
57
308
Wygrecka
,
M.
,
Birnhuber
,
A.
,
Seeliger
,
B.
,
Michalick
,
L.
,
Pak
,
O.
,
Schultz
,
A.S.
et al. (
2021
)
Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19
.
Blood
Adv.
6
,
1074
1087
309
Wool
,
G.D.
and
Miller
,
J.L.
(
2021
)
The impact of COVID-19 disease on platelets and coagulation
.
Pathobiology
88
,
15
27
310
Iba
,
T.
,
Levy
,
J.H.
,
Connors
,
J.M.
,
Warkentin
,
T.E.
,
Thachil
,
J.
and
Levi
,
M.
(
2020
)
The unique characteristics of COVID-19 coagulopathy
.
Crit. Care
24
,
360
311
Loo
,
J.
,
Spittle
,
D.A.
and
Newnham
,
M.
(
2021
)
COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms
.
Thorax
76
,
412
420
312
Manolis
,
A.S.
,
Manolis
,
T.A.
,
Manolis
,
A.A.
,
Papatheou
,
D.
and
Melita
,
H.
(
2021
)
COVID-19 Infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management
.
J. Cardiovasc. Pharmacol. Ther.
26
,
12
24
313
Poor
,
H.D.
(
2021
)
Pulmonary thrombosis and thromboembolism in COVID-19
.
Chest
160
,
1471
1480
314
McGonagle
,
D.
,
O'Donnell
,
J.S.
,
Sharif
,
K.
,
Emery
,
P.
and
Bridgewood
,
C.
(
2020
)
Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia
.
Lancet Rheumatol.
2
,
e437
e445
315
Zhou
,
F.
,
Yu
,
T.
,
Du
,
R.
,
Fan
,
G.
,
Liu
,
Y.
,
Liu
,
Z.
et al. (
2020
)
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
.
Lancet
395
,
1054
1062
316
Gorog
,
D.A.
,
Storey
,
R.F.
,
Gurbel
,
P.A.
,
Tantry
,
U.S.
,
Berger
,
J.S.
,
Chan
,
M.Y.
et al. (
2022
)
Current and novel biomarkers of thrombotic risk in COVID-19: a consensus statement from the international COVID-19 thrombosis biomarkers colloquium
.
Nat. Rev. Cardiol.
19
,
475
495
317
Wichmann
,
D.
,
Sperhake
,
J.P.
,
Lütgehetmann
,
M.
,
Steurer
,
S.
,
Edler
,
C.
,
Heinemann
,
A.
et al. (
2020
)
Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study
.
Ann. Intern. Med.
173
,
268
277
318
Panigada
,
M.
,
Bottino
,
N.
,
Tagliabue
,
P.
,
Grasselli
,
G.
,
Novembrino
,
C.
,
Chantarangkul
,
V.
et al. (
2020
)
Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis
.
J. Thromb. Haemost.
18
,
1738
1742
319
Aktaa
,
S.
,
Wu
,
J.
,
Nadarajah
,
R.
,
Rashid
,
M.
,
de Belder
,
M.
,
Deanfield
,
J.
et al. (
2021
)
Incidence and mortality due to thromboembolic events during the COVID-19 pandemic: multi-sourced population-based health records cohort study
.
Thromb. Res.
202
,
17
23
320
Zuin
,
M.
,
Engelen
,
M.M.
,
Barco
,
S.
,
Spyropoulos
,
A.C.
,
Vanassche
,
T.
,
Hunt
,
B.J.
et al. (
2021
)
Incidence of venous thromboembolic events in COVID-19 patients after hospital discharge: a systematic review and meta-analysis
.
Thromb. Res.
209
,
94
98
321
Kastenhuber
,
E. R.
,
Mercadante
,
M.
,
Nilsson-Payant
,
B.
,
Johnson
,
J. L.
,
Jaimes
,
J. A.
,
Muecksch
,
F.
et al. (
2022
)
Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry
.
eLife
11
,
e77444
322
Hess
,
J.R.
,
Brohi
,
K.
,
Dutton
,
R.P.
,
Hauser
,
C.J.
,
Holcomb
,
J.B.
,
Kluger
,
Y.
et al. (
2008
)
The coagulopathy of trauma: a review of mechanisms
.
J. Trauma
65
,
748
754
323
Curry
,
N.
,
Stanworth
,
S.
,
Hopewell
,
S.
,
Doree
,
C.
,
Brohi
,
K.
and
Hyde
,
C.
(
2011
)
Trauma-induced coagulopathy--a review of the systematic reviews: is there sufficient evidence to guide clinical transfusion practice?
Transfus. Med. Rev.
25
,
217
231.e212
324
Simmons
,
J.W.
,
Pittet
,
J.F.
and
Pierce
,
B.
(
2014
)
Trauma-induced coagulopathy
.
Curr. Anesthesiol. Rep.
4
,
189
199
325
Jankun
,
J.
,
Landeta
,
P.
,
Pretorius
,
E.
,
Skrzypczak-Jankun
,
E.
and
Lipinski
,
B.
(
2014
)
Unusual clotting dynamics of plasma supplemented with iron(III)
.
Int. J. Mol. Med.
33
,
367
372
326
Kell
,
D.B.
and
Pretorius
,
E.
(
2015
)
The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen)
.
Integr. Biol.
7
,
24
52
327
Lipinski
,
B.
and
Pretorius
,
E.
(
2012
)
Novel pathway of iron-induced blood coagulation: implications for diabetes mellitus and its complications
.
Pol. Arch. Med. Wewn
122
,
115
122
328
Pretorius
,
E.
,
Vermeulen
,
N.
,
Bester
,
J.
,
Lipinski
,
B.
and
Kell
,
D.B.
(
2013
)
A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy
.
Toxicol. Mech. Methods
23
,
352
359
329
Pretorius
,
E.
and
Lipinski
,
B.
(
2013
)
Differences in morphology of fibrin clots induced with thrombin and ferric ions and its pathophysiological consequences
.
Heart Lung Circ.
22
,
447
449
330
Pretorius
,
E.
,
Bester
,
J.
,
Vermeulen
,
N.
,
Lipinski
,
B.
,
Gericke
,
G.S.
and
Kell
,
D.B.
(
2014
)
Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents
.
PLoS One
9
,
e85271
331
Pretorius
,
E.
,
Mbotwe
,
S.
,
Bester
,
J.
,
Robinson
,
C.
and
Kell
,
D.B.
(
2016
)
Acute induction of anomalous blood clotting by highly substoichiometric levels of bacterial lipopolysaccharide (LPS). bioRxiv version. bioRxiv 2016-053538v053531
332
Pretorius
,
E.
,
Page
,
M.J.
,
Mbotwe
,
S.
and
Kell
,
D.B.
(
2018
)
Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease
.
PLoS One
13
,
e0192121
333
Pretorius
,
E.
,
Bester
,
J.
,
Page
,
M.J.
and
Kell
,
D.B.
(
2018
)
The potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia
.
Front. Aging Neurosci.
10
,
257
334
Conn
,
D.L.
,
Mcduffie
,
F.C.
,
Kazmier
,
F.J.
,
Schroeter
,
A.L.
and
Sun
,
N.C.J.
(
1976
)
Coagulation abnormalities in rheumatoid disease
.
Arthritis Rheum.
19
,
1237
1243
335
Bezuidenhout
,
J.
,
Venter
,
C.
,
Roberts
,
T.
,
Tarr
,
G.
,
Kell
,
D.
and
Pretorius
,
E.
(
2020
)
Detection of citrullinated fibrin in plasma clots of RA patients and its relation to altered structural clot properties, disease-related inflammation and prothrombotic tendency
.
Front. Immunol.
11
,
577523
336
Pretorius
,
E.
,
Oberholzer
,
H.M.
,
van der Spuy
,
W.J.
,
Swanepoel
,
A.C.
and
Soma
,
P.
(
2012
)
Scanning electron microscopy of fibrin networks in rheumatoid arthritis: a qualitative analysis
.
Rheumatol. Int.
32
,
1611
1615
337
Zhang
,
P.
,
Liu
,
J.
and
Tan
,
B.
(
2015
)
Hypercoagulation in patients with rheumatoid arthritis correlates with activation of Act1/NF-Κb signaling pathway
.
J. Rheum. Dis. Treat.
1
,
4
338
Dusse
,
L.M.
,
Rios
,
D.R.A.
,
Pinheiro
,
M.B.
,
Cooper
,
A.J.
and
Lwaleed
,
B.A.
(
2011
)
Pre-eclampsia: relationship between coagulation, fibrinolysis and inflammation
.
Clin. Chim. Acta
412
,
17
21
339
Esmon
,
C.T.
(
2005
)
The interactions between inflammation and coagulation
.
Br. J. Haematol.
131
,
417
430
340
Jennewein
,
C.
,
Paulus
,
P.
and
Zacharowski
,
K.
(
2011
)
Linking inflammation and coagulation: novel drug targets to treat organ ischemia
.
Curr. Opin. Anaesthesiol.
24
,
375
380
341
Schouten
,
M.
,
Wiersinga
,
W.J.
,
Levi
,
M.
and
van der Poll
,
T.
(
2008
)
Inflammation, endothelium, and coagulation in sepsis
.
J. Leukoc. Biol.
83
,
536
545
342
Tantry
,
U.S.
,
Bliden
,
K.P.
,
Suarez
,
T.A.
,
Kreutz
,
R.P.
,
Dichiara
,
J.
and
Gurbel
,
P.A.
(
2010
)
Hypercoagulability, platelet function, inflammation and coronary artery disease acuity: results of the thrombotic risk progression (TRIP) study
.
Platelets
21
,
360
367
343
van der Poll
,
T.
,
de Boer
,
J.D.
and
Levi
,
M.
(
2011
)
The effect of inflammation on coagulation and vice versa
.
Curr. Opin. Infect. Dis.
24
,
273
278
344
van der Poll
,
T.
and
Levi
,
M.
(
2012
)
Crosstalk between inflammation and coagulation: the lessons of sepsis
.
Curr. Vasc. Pharmacol.
10
,
632
638
345
Zia
,
A.
,
Russell
,
J.
,
Sarode
,
R.
,
Veeram
,
S.R.
,
Josephs
,
S.
,
Malone
,
K.
et al. (
2017
)
Markers of coagulation activation, inflammation and fibrinolysis as predictors of poor outcomes after pediatric venous thromboembolism: a systematic review and meta-analysis
.
Thromb. Res.
160
,
1
8
346
Magro
,
G.
(
2020
)
COVID-19: review on latest available drugs and therapies against SARS-CoV-2. coagulation and inflammation cross-talking
.
Virus Res.
286
,
198070
347
Bhattacharyya
,
R.
,
Iyer
,
P.
,
Phua
,
G.C.
and
Lee
,
J.H.
(
2020
)
The interplay between coagulation and inflammation pathways in COVID-19-associated respiratory failure: a narrative review
.
Pulm. Ther.
6
,
215
231
348
Kowalewski
,
M.
,
Fina
,
D.
,
Slomka
,
A.
,
Raffa
,
G.M.
,
Martucci
,
G.
,
Lo Coco
,
V.
et al. (
2020
)
COVID-19 and ECMO: the interplay between coagulation and inflammation-a narrative review
.
Crit. Care
24
,
205
349
Hulshof
,
A.M.
,
Brüggemann
,
R.A.G.
,
Mulder
,
M.M.G.
,
van de Berg
,
T.W.
,
Sels
,
J.E.M.
,
Olie
,
R.H.
et al. and
Dutch COVID-19 thrombosis consortium (DCTC)
(
2021
)
Serial EXTEM, FIBTEM, and tPA rotational thromboelastometry observations in the maastricht intensive care COVID cohort-persistence of hypercoagulability and hypofibrinolysis despite anticoagulation
.
Front. Cardiovasc. Med.
8
,
654174
350
Berg
,
D.
,
Berg
,
L.H.
,
Couvaras
,
J.
and
Harrison
,
H.
(
1999
)
Chronic fatigue syndrome and/or fibromyalgia as a variation of antiphospholipid antibody syndrome: an explanatory model and approach to laboratory diagnosis
.
Blood Coagul. Fibrinolysis
10
,
435
438
351
Brewer
,
J.H.
and
Berg
,
D.
(
2011
)
Hypercoagulable state associated with active human herpesvirus-6 (HHV-6) viremia in patients with chronic fatigue syndrome
.
J. Chron. Fatigue Syndr.
8
,
111
116
352
Nunes
,
J.M.
,
Kruger
,
A.
,
Proal
,
A.
,
Kell
,
D.B.
and
Pretorius
,
E.
(
2022
)
The occurrence of hyperactivated platelets and fibrinaloid microclots in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)
.
Res. Sq.
353
Kell
,
D.B.
and
Pretorius
,
E.
(
2018
)
To what extent are the terminal stages of sepsis, septic shock, SIRS, and multiple organ dysfunction syndrome actually driven by a toxic prion/amyloid form of fibrin?
Semin. Thromb. Hemost.
44
,
224
238
354
Pretorius
,
E.
,
Mbotwe
,
S.
,
Bester
,
J.
,
Robinson
,
C.J.
and
Kell
,
D.B.
(
2016
)
Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide
.
J. R. Soc. Interface
123
,
20160539
355
Kell
,
D.B.
and
Pretorius
,
E.
(
2017
)
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting
.
Progr. Biophys. Mol. Biol.
123
,
16
41
356
Pretorius
,
E.
,
Mbotwe
,
S.
and
Kell
,
D.B.
(
2017
)
Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular comorbidities
.
Sci. Rep.
7
,
9680
357
Pretorius
,
E.
,
Vlok
,
M.
,
Venter
,
C.
,
Bezuidenhout
,
J.A.
,
Laubscher
,
G.J.
,
Steenkamp
,
J.
et al. (
2021
)
Persistent clotting protein pathology in Long COVID/ post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin
.
medRxiv
2021.2005.2021.21257578
358
Prusiner
,
S.B.
(
1982
)
Novel proteinaceous infectious particles cause scrapie
.
Science
216
,
136
144
359
Aguzzi
,
A.
,
Heikenwalder
,
M.
and
Polymenidou
,
M.
(
2007
)
Insights into prion strains and neurotoxicity
.
Nat. Rev. Mol. Cell Biol.
8
,
552
561
360
Aguzzi
,
A.
and
Calella
,
A.M.
(
2009
)
Prions: protein aggregation and infectious diseases
.
Physiol. Rev.
89
,
1105
1152
361
Aguzzi
,
A.
and
Lakkaraju
,
A.K.K.
(
2016
)
Cell biology of prions and prionoids: a status report
.
Trends Cell Biol.
26
,
40
51
362
Meng
,
X.
,
Munishkina
,
L.A.
,
Fink
,
A.L.
and
Uversky
,
V.N.
(
2009
)
Molecular mechanisms underlying the flavonoid-induced inhibition of alpha-synuclein fibrillation
.
Biochemistry
48
,
8206
8224
363
Cortes-Canteli
,
M.
,
Paul
,
J.
,
Norris
,
E.H.
,
Bronstein
,
R.
,
Ahn
,
H.J.
,
Zamolodchikov
,
D.
et al. (
2010
)
Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease
.
Neuron
66
,
695
709
364
Hill
,
J.M.
and
Lukiw
,
W.J.
(
2015
)
Microbial-generated amyloids and Alzheimer's disease (AD)
.
Front. Aging Neurosci.
7
,
9
365
Ahn
,
H.J.
,
Chen
,
Z.L.
,
Zamolodchikov
,
D.
,
Norris
,
E.H.
and
Strickland
,
S.
(
2017
)
Interactions of beta-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer's disease
.
Curr. Opin. Hematol.
24
,
427
431
366
Jana
,
A.K.
,
Greenwood
,
A.B.
and
Hansmann
,
U.H.E.
(
2021
)
Presence of a SARS-CoV-2 protein enhances amyloid formation of serum amyloid A
.
J. Phys. Chem. B
125
,
9155
9167
367
Michiels
,
E.
,
Rousseau
,
F.
and
Schymkowitz
,
J.
(
2021
)
Mechanisms and therapeutic potential of interactions between human amyloids and viruses
.
Cell. Mol. Life Sci.
78
,
2485
2501
368
Nyström
,
S.
and
Hammarström
,
P.
(
2021
)
Amyloidogenesis of SARS-CoV-2 spike protein
.
bioRxiv
2021.2012.2016.472920
369
Ezzat
,
K.
,
Pernemalm
,
M.
,
Palsson
,
S.
,
Roberts
,
T.C.
,
Järver
,
P.
,
Dondalska
,
A.
et al. (
2019
)
The viral protein corona directs viral pathogenesis and amyloid aggregation
.
Nat. Commun.
10
,
2331
370
Østergaard
,
L.
(
2021
)
SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation
.
Physiol. Rep.
9
,
e14726
371
Swanepoel
,
A.C.
,
Lindeque
,
B.G.
,
Swart
,
P.J.
,
Abdool
,
Z.
and
Pretorius
,
E.
(
2014
)
Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: a qualitative investigation
.
Microsc. Res. Tech.
77
,
594
601
372
Kell
,
D.B.
,
Heyden
,
E.L.
and
Pretorius
,
E.
(
2020
)
The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria
.
Front. Immunol.
11
,
1221
373
Pretorius
,
E.
and
Kell
,
D.B.
(
2014
)
Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases
.
Integr. Biol.
6
,
486
510
374
Lipinski
,
B.
and
Pretorius
,
E.
(
2013
)
The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium
.
Front. Hum. Neurosci.
7
,
735
375
Groen
,
A.K.
,
Wanders
,
R.J.
,
Westerhoff
,
H.V.
,
van der Meer
,
R.
and
Tager
,
J.M.
(
1982
)
Quantification of the contribution of various steps to the control of mitochondrial respiration
.
J. Biol. Chem.
257
,
2754
2757
376
van Beest
,
P.
,
Wietasch
,
G.
,
Scheeren
,
T.
,
Spronk
,
P.
and
Kuiper
,
M.
(
2011
)
Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle
.
Crit. Care
15
,
232
377
Nelson
,
L.D.
(
1986
)
Continuous venous oximetry in surgical patients
.
Ann. Surg.
203
,
329
333
378
Oliynyk
,
O.V.
,
Rorat
,
M.
and
Barg
,
W.
(
2021
)
Oxygen metabolism markers as predictors of mortality in severe COVID-19
.
Int. J. Infect. Dis.
103
,
452
456
379
Elezagic
,
D.
,
Johannis
,
W.
,
Burst
,
V.
,
Klein
,
F.
and
Streichert
,
T.
(
2021
)
Venous blood gas analysis in patients with COVID-19 symptoms in the early assessment of virus positivity
.
J. Lab. Med.
45
,
27
30
380
Philip
,
K.E.J.
,
Bennett
,
B.
,
Fuller
,
S.
,
Lonergan
,
B.
,
McFadyen
,
C.
,
Burns
,
J.
et al. (
2020
)
Working accuracy of pulse oximetry in COVID-19 patients stepping down from intensive care: a clinical evaluation
.
BMJ Open Respir. Res.
7
,
e000778
381
Rubano
,
J.A.
,
Maloney
,
L.M.
,
Simon
,
J.
,
Rutigliano
,
D.N.
,
Botwinick
,
I.
,
Jawa
,
R.S.
et al. (
2021
)
An evolving clinical need: discordant oxygenation measurements of intubated COVID-19 patients
.
Ann. Biomed. Eng.
49
,
959
963
382
Wilson-Baig
,
N.
,
McDonnell
,
T.
and
Bentley
,
A.
(
2021
)
Discrepancy between Sp O2 and Sa O2 in patients with COVID-19
.
Anaesthesia
76
,
6
7
383
Ferrari
,
M.
and
Quaresima
,
V.
(
2020
)
Hypoxemia in COVID-19: cerebral oximetry should be explored as a warning indicator for mechanically ventilated adults with COVID-19
.
Respir. Res.
21
,
261
384
Invernizzi
,
A.
,
Torre
,
A.
,
Parrulli
,
S.
,
Zicarelli
,
F.
,
Schiuma
,
M.
,
Colombo
,
V.
et al. (
2020
)
Retinal findings in patients with COVID-19: results from the SERPICO-19 study
.
EClinicalMedicine
27
,
100550
385
Invernizzi
,
A.
,
Schiuma
,
M.
,
Parrulli
,
S.
,
Torre
,
A.
,
Zicarelli
,
F.
,
Colombo
,
V.
et al. (
2021
)
Retinal vessels modifications in acute and post-COVID-19
.
Sci. Rep.
11
,
19373
386
Invernizzi
,
A.
(
2022
)
The impact of COVID-19 on the retina: clinical features and management considerations
.
Expert. Rev. Ophthalmol.
17
,
53
60
387
Teo
,
K.Y.
,
Invernizzi
,
A.
,
Staurenghi
,
G.
and
Cheung
,
C.M.G.
(
2022
)
COVID-19-related retinal micro-vasculopathy - a review of current evidence
.
Am. J. Ophthalmol.
235
,
98
110
388
Le Ng
,
X.
,
Betzler
,
B.K.
,
Testi
,
I.
,
Ho
,
S.L.
,
Tien
,
M.
,
Ngo
,
W.K.
et al. (
2021
)
Ocular adverse events after COVID-19 vaccination
.
Ocul. Immunol. Inflamm.
29
,
1216
1224
389
Barizien
,
N.
,
Le Guen
,
M.
,
Russel
,
S.
,
Touche
,
P.
,
Huang
,
F.
and
Vallee
,
A.
(
2021
)
Clinical characterization of dysautonomia in long COVID-19 patients
.
Sci. Rep.
11
,
14042
390
Asarcikli
,
L.D.
,
Hayiroglu
,
M.I.
,
Osken
,
A.
,
Keskin
,
K.
,
Kolak
,
Z.
and
Aksu
,
T.
(
2022
)
Heart rate variability and cardiac autonomic functions in post-COVID period
.
J. Interv. Card. Electrophysiol.
63
,
715
721
391
Shah
,
B.
,
Kunal
,
S.
,
Bansal
,
A.
,
Jain
,
J.
,
Poundrik
,
S.
,
Shetty
,
M.K.
et al. (
2022
)
Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence
.
Indian Pacing Electrophysiol. J.
22
,
70
76
392
Chadda
,
K.R.
,
Blakey
,
E.E.
,
Huang
,
C.L.
and
Jeevaratnam
,
K.
(
2022
)
Long COVID-19 and postural orthostatic tachycardia syndrome- is dysautonomia to be blamed?
Front. Cardiovasc. Med.
9
,
860198
393
Varanasi
,
S.
,
Sathyamoorthy
,
M.
,
Chamakura
,
S.
and
Shah
,
S.A.
(
2021
)
Management of long-COVID postural orthostatic tachycardia syndrome with enhanced external counterpulsation
.
Cureus
13
,
e18398
394
Monaghan
,
A.
,
Jennings
,
G.
,
Xue
,
F.
,
Byrne
,
L.
,
Duggan
,
E.
and
Romero-Ortuno
,
R.
(
2022
)
Orthostatic intolerance in adults reporting long COVID symptoms was not associated with postural orthostatic tachycardia syndrome
.
Front. Physiol.
13
,
833650
395
Larsen
,
N.W.
,
Stiles
,
L.E.
and
Miglis
,
M.G.
(
2021
)
Preparing for the long-haul: autonomic complications of COVID-19
.
Auton. Neurosci.
235
,
102841
396
Kay
,
G.N.
,
Ashar
,
M.S.
,
Bubien
,
R.S.
and
Dailey
,
S.M.
(
1995
)
Relationship between heart rate and oxygen kinetics during constant workload exercise
.
Pacing Clin. Electrophysiol.
18
,
1853
1860
397
Emblem
,
K.E.
,
Scheie
,
D.
,
Due-Tonnessen
,
P.
,
Nedregaard
,
B.
,
Nome
,
T.
,
Hald
,
J.K.
et al. (
2008
)
Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes
.
AJNR Am. J. Neuroradiol.
29
,
1664
1670
398
Bhargava
,
A.
,
Monteagudo
,
B.
,
Kushwaha
,
P.
,
Senarathna
,
J.
,
Ren
,
Y.
,
Riddle
,
R.C.
et al. (
2022
)
Vascuviz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology
.
Nat. Methods
19
,
242
254
399
Epah
,
J.
,
Palfi
,
K.
,
Dienst
,
F.L.
,
Malacarne
,
P.F.
,
Bremer
,
R.
,
Salamon
,
M.
et al. (
2018
)
3D imaging and quantitative analysis of vascular networks: a comparison of ultramicroscopy and micro-computed tomography
.
Theranostics
8
,
2117
2133
400
Kirst
,
C.
,
Skriabine
,
S.
,
Vieites-Prado
,
A.
,
Topilko
,
T.
,
Bertin
,
P.
,
Gerschenfeld
,
G.
et al. (
2020
)
Mapping the fine-scale organization and plasticity of the brain vasculature
.
Cell
180
,
780
795.e725
401
Chaigneau
,
E.
,
Oheim
,
M.
,
Audinat
,
E.
and
Charpak
,
S.
(
2003
)
Two-photon imaging of capillary blood flow in olfactory bulb glomeruli
.
Proc. Natl Acad. Sci. U.S.A.
100
,
13081
13086
402
Smith
,
A.F.
,
Doyeux
,
V.
,
Berg
,
M.
,
Peyrounette
,
M.
,
Haft-Javaherian
,
M.
,
Larue
,
A.E.
et al. (
2019
)
Brain capillary networks across species: a few simple organizational requirements are sufficient to reproduce both structure and function
.
Front. Physiol.
10
,
233
403
Gould
,
I.G.
,
Tsai
,
P.
,
Kleinfeld
,
D.
and
Linninger
,
A.
(
2017
)
The capillary bed offers the largest hemodynamic resistance to the cortical blood supply
.
J. Cereb. Blood Flow Metab.
37
,
52
68
404
McMahan
,
C.A.
,
Maxwell
,
L.C.
and
Shepherd
,
A.P.
(
1986
)
Estimation of the distribution of blood vessel diameters from the arteriovenous passage of microspheres
.
Biometrics
42
,
371
380
405
Müller
,
B.
,
Lang
,
S.
,
Dominietto
,
M.
,
Rudin
,
M.
,
Schulz
,
G.
,
Deyhle
,
H.
et al. (
2008
)
High-resolution tomographic imaging of microvessels
.
Proc. SPIE
7078
,
70780B
406
Razavi
,
M.S.
,
Shirani
,
E.
and
Kassab
,
G.S.
(
2018
)
Scaling laws of flow rate, vessel blood volume, lengths, and transit times with number of capillaries
.
Front. Physiol.
9
,
581
407
Diez-Silva
,
M.
,
Dao
,
M.
,
Han
,
J.
,
Lim
,
C.T.
and
Suresh
,
S.
(
2010
)
Shape and biomechanical characteristics of human red blood cells in health and disease
.
MRS Bull./Mater. Res. Soc.
35
,
382
388
408
Pries
,
A.R.
,
Neuhaus
,
D.
and
Gaehtgens
,
P.
(
1992
)
Blood viscosity in tube flow: dependence on diameter and hematocrit
.
Am. J. Physiol.
263
,
H1770
H1778
409
Kelch
,
I.D.
,
Bogle
,
G.
,
Sands
,
G.B.
,
Phillips
,
A.R.J.
,
LeGrice
,
I.J.
and
Dunbar
,
P.R.
(
2015
)
Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node
.
Sci. Rep.
5
,
16534
410
Wang
,
L.
,
Yuan
,
J.
,
Jiang
,
H.
,
Yan
,
W.
,
Cintrón-Colón
,
H.R.
,
Perez
,
V.L.
et al. (
2016
)
Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature
.
Eye Contact Lens
42
,
135
140
411
Downey
,
G.P.
,
Doherty
,
D.E.
,
Schwab
, III,
B.
,
Elson
,
E.L.
,
Henson
,
P.M.
and
Worthen
,
G.S.
(
1990
)
Retention of leukocytes in capillaries: role of cell size and deformability
.
J. Appl. Physiol. (1985)
69
,
1767
1778
412
Schimmel
,
L.
,
Heemskerk
,
N.
and
van Buul
,
J.D.
(
2017
)
Leukocyte transendothelial migration: a local affair
.
Small GTPases
8
,
1
15
413
Saha
,
A.K.
,
Schmidt
,
B.R.
,
Wilhelmy
,
J.
,
Nguyen
,
V.
,
Abugherir
,
A.
,
Do
,
J.K.
et al. (
2019
)
Red blood cell deformability is diminished in patients with chronic fatigue syndrome
.
Clin. Hemorheol. Microcirc.
71
,
113
116
414
Winkelmann
,
J.A.
,
Eid
,
A.
,
Spicer
,
G.
,
Almassalha
,
L.M.
,
Nguyen
,
T.Q.
and
Backman
,
V.
(
2019
)
Spectral contrast optical coherence tomography angiography enables single-scan vessel imaging
.
Light-Sci. Appl.
8
, article no. 7
415
Hilty
,
M.P.
,
Guerci
,
P.
,
Ince
,
Y.
,
Toraman
,
F.
and
Ince
,
C.
(
2019
)
Microtools enables automated quantification of capillary density and red blood cell velocity in handheld vital microscopy
.
Commun. Biol.
2
,
217
416
Behrens
,
F.
,
Holle
,
J.
,
Kuebler
,
W.M.
and
Simmons
,
S.
(
2020
)
Extracellular vesicles as regulators of kidney function and disease
.
Intensive Care Med. Exp.
8
,
22
417
Chen
,
J.
,
Sivan
,
U.
,
Tan
,
S.L.
,
Lippo
,
L.
,
De Angelis
,
J.
,
Labella
,
R.
et al. (
2021
)
High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging
.
Sci. Adv.
7
,
eabd7819
418
Abdou
,
M.A.H.
,
Truong
,
T.T.
,
Dykky
,
A.
,
Ferreira
,
P.
and
Jul
,
E.
(
2022
)
Capillarynet: an automated system to quantify skin capillary density and red blood cell velocity from handheld vital microscopy
.
Artif. Intell. Med.
127
,
102287
419
Lugo-Hernandez
,
E.
,
Squire
,
A.
,
Hagemann
,
N.
,
Brenzel
,
A.
,
Sardari
,
M.
,
Schlechter
,
J.
et al. (
2017
)
3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy
.
J. Cereb. Blood Flow Metab.
37
,
3355
3367
420
Basser
,
P.
(
2022
)
Detection of stroke by portable, low-field MRI: a milestone in medical imaging
.
Sci. Adv.
8
,
eabp9307
421
Yuen
,
M.M.
,
Prabhat
,
A.M.
,
Mazurek
,
M.H.
,
Chavva
,
I.R.
,
Crawford
,
A.
,
Cahn
,
B.A.
et al. (
2022
)
Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke
.
Sci. Adv.
8
,
eabm3952
422
Pretorius
,
E.
,
Venter
,
C.
,
Laubscher
,
G.J.
,
Kotze
,
M.J.
,
Oladejo
,
S.
,
Watson
,
L.R.
et al. (
2022
)
Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with long COVID/ post-acute sequelae of COVID-19 (PASC) cardiovasc diabetol
21
,
148
423
Robbins
,
P.D.
,
Dorronsoro
,
A.
and
Booker
,
C.N.
(
2016
)
Regulation of chronic inflammatory and immune processes by extracellular vesicles
.
J. Clin. Invest.
126
,
1173
1180
424
Benedikter
,
B.J.
,
Wouters
,
E.F.M.
,
Savelkoul
,
P.H.M.
,
Rohde
,
G.G.U.
and
Stassen
,
F.R.M.
(
2018
)
Extracellular vesicles released in response to respiratory exposures: implications for chronic disease
.
J. Toxicol. Environ. Health B Crit. Rev.
21
,
142
160
425
Shetty
,
A.K.
and
Upadhya
,
R.
(
2021
)
Extracellular vesicles in health and disease
.
Aging Dis.
12
,
1358
1362
426
Trappe
,
A.
,
Donnelly
,
S.C.
,
McNally
,
P.
and
Coppinger
,
J.A.
(
2021
)
Role of extracellular vesicles in chronic lung disease
.
Thorax
76
,
1047
1056
427
Gomez
,
N.
,
James
,
V.
,
Onion
,
D.
and
Fairclough
,
L.C.
(
2022
)
Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review
.
Respir. Res.
23
,
82
428
Withrow
,
J.
,
Murphy
,
C.
,
Liu
,
Y.
,
Hunter
,
M.
,
Fulzele
,
S.
and
Hamrick
,
M.W.
(
2016
)
Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis
.
Arthritis. Res. Ther.
18
,
286
429
Burbano
,
C.
,
Rojas
,
M.
,
Muñoz-Vahos
,
C.
,
Vanegas-García
,
A.
,
Correa
,
L.A.
,
Vásquez
,
G.
et al. (
2018
)
Extracellular vesicles are associated with the systemic inflammation of patients with seropositive rheumatoid arthritis
.
Sci. Rep.
8
,
17917
430
Schioppo
,
T.
,
Ubiali
,
T.
,
Ingegnoli
,
F.
,
Bollati
,
V.
and
Caporali
,
R.
(
2021
)
The role of extracellular vesicles in rheumatoid arthritis: a systematic review
.
Clin. Rheumatol.
40
,
3481
3497
431
Wang
,
W.
,
Deng
,
Z.
,
Liu
,
G.
,
Yang
,
J.
,
Zhou
,
W.
,
Zhang
,
C.
et al. (
2021
)
Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling
.
Exp. Ther. Med.
22
,
1120
432
Alghamdi
,
M.
,
Alamry
,
S.A.
,
Bahlas
,
S.M.
,
Uversky
,
V.N.
and
Redwan
,
E.M.
(
2022
)
Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis
.
Cell. Mol. Life Sci.
79
,
25
433
Miao
,
H.B.
,
Wang
,
F.
,
Lin
,
S.
and
Chen
,
Z.
(
2022
)
Update on the role of extracellular vesicles in rheumatoid arthritis
.
Expert. Rev. Mol. Med.
24
,
e12
434
González-Cebrián
,
A.
,
Almenar-Pérez
,
E.
,
Xu
,
J.
,
Yu
,
T.
,
Huang
,
W.E.
,
Giménez-Orenga
,
K.
et al. (
2022
)
Diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome with partial least squares discriminant analysis: relevance of Blood extracellular vesicles
.
Front. Med
.
9
, 842991
435
Wai Yim
,
K.H.
,
Borgoni
,
S.
and
Chahwan
,
R.
(
2022
)
Serum extracellular vesicles trace COVID-19 progression and immune responses
.
medRxiv
2022.2001.2019.22269529
436
Sun
,
B.
,
Tang
,
N.
,
Peluso
,
M.J.
,
Iyer
,
N.S.
,
Torres
,
L.
,
Donatelli
,
J.L.
et al. (
2021
)
Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations
.
Cells
10
,
386
437
Richards
,
R.S.
,
Wang
,
L.
and
Jelinek
,
H.
(
2007
)
Erythrocyte oxidative damage in chronic fatigue syndrome
.
Arch. Med. Res.
38
,
94
98
438
Thomas
,
T.
,
Stefanoni
,
D.
,
Dzieciatkowska
,
M.
,
Issaian
,
A.
,
Nemkov
,
T.
,
Hill
,
R.C.
et al. (
2020
)
Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients
.
J. Proteome Res.
19
,
4455
4469
439
Simpson
,
L.O.
(
1989
)
Nondiscocytic erythrocytes in myalgic encephalomyelitis
.
N. .Z Med. J.
102
,
126
127
440
Baklund
,
I.H.
,
Dammen
,
T.
,
Moum
,
,
Kristiansen
,
W.
,
Duarte
,
D.S.
,
Castro-Marrero
,
J.
et al. (
2021
)
Evaluating routine blood tests according to clinical symptoms and diagnostic criteria in individuals with myalgic encephalomyelitis/chronic fatigue syndrome
.
J. Clin. Med
10
,
3105
441
McMahon
,
C.J.
,
Hopkins
,
S.
,
Vail
,
A.
,
King
,
A.T.
,
Smith
,
D.
,
Illingworth
,
K.J.
et al. (
2013
)
Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage
.
J. Neurointerv. Surg.
5
,
512
517
442
Broadbent
,
S.
and
Coutts
,
R.
(
2015
)
Irregularities in red cell distribution width and lymphocyte concentration in individuals with chronic fatigue syndrome
.
Int. J. Health Sci.
3
,
71
78
443
Pasini
,
E.
,
Corsetti
,
G.
,
Romano
,
C.
,
Scarabelli
,
T.M.
,
Chen-Scarabelli
,
C.
,
Saravolatz
,
L.
et al. (
2021
)
Serum metabolic profile in patients with long-COVID (PASC) syndrome: clinical implications
.
Front. Med.
8
,
714426
444
Zinellu
,
A.
and
Mangoni
,
A.A.
(
2021
)
Red blood cell distribution width, disease severity, and mortality in hospitalized patients with SARS-CoV-2 infection: a systematic review and meta-analysis
.
J. Clin. Med.
10
,
286
445
Russo
,
A.
,
Tellone
,
E.
,
Barreca
,
D.
,
Ficarra
,
S.
and
Lagana
,
G.
(
2022
)
Implication of COVID-19 on erythrocytes functionality: red blood cell biochemical implications and morpho-Functional aspects
.
Int. J. Mol. Sci.
23
,
2171
446
Wang
,
Z.H.
,
Fu
,
B.Q.
,
Lin
,
Y.W.
,
Wei
,
X.B.
,
Geng
,
H.
,
Guo
,
W.X.
et al. (
2022
)
Red blood cell distribution width: a severity indicator in patients with COVID-19
.
J. Med. Virol.
94
,
2133
2138
447
Karampitsakos
,
T.
,
Akinosoglou
,
K.
,
Papaioannou
,
O.
,
Panou
,
V.
,
Koromilias
,
A.
,
Bakakos
,
P.
et al. (
2020
)
Increased Red cell distribution width Is associated with disease severity in hospitalized adults with SARS-CoV-2 infection: an observational multicentric study
.
Front. Med. (Lausanne)
7
,
616292
448
Guaní-Guerra
,
E.
,
Torres-Murillo
,
B.
,
Muñoz-Corona
,
C.
,
Rodríguez-Jiménez
,
J.C.
,
Macias
,
A.E.
,
Scavo-Montes
,
D.A.
et al. (
2022
)
Diagnostic accuracy of the RDW for predicting death in COVID-19
.
Medicina (Kaunas)
58
,
613
449
Lam
,
L.K.M.
,
Reilly
,
J.P.
,
Rux
,
A.H.
,
Murphy
,
S.J.
,
Kuri-Cervantes
,
L.
,
Weisman
,
A.R.
et al. (
2021
)
Erythrocytes identify complement activation in patients with COVID-19
.
Am. J. Physiol. Lung Cell. Mol. Physiol.
321
,
L485
L489
450
Kisserli
,
A.
,
Schneider
,
N.
,
Audonnet
,
S.
,
Tabary
,
T.
,
Goury
,
A.
,
Cousson
,
J.
et al. (
2021
)
Acquired decrease of the C3b/C4b receptor (CR1, CD35) and increased C4d deposits on erythrocytes from ICU COVID-19 patients
.
Immunobiology
226
,
152093
451
Lang
,
F.
,
Abed
,
M.
,
Lang
,
E.
and
Föller
,
M.
(
2014
)
Oxidative stress and suicidal erythrocyte death
.
Antioxid. Redox Signal.
21
,
138
153
452
Pretorius
,
E.
,
du Plooy
,
J.N.
and
Bester
,
J.
(
2016
)
A comprehensive review on eryptosis
.
Cell. Physiol. Biochem.
39
,
1977
2000
453
Qadri
,
S.M.
,
Bissinger
,
R.
,
Solh
,
Z.
and
Oldenborg
,
P.A.
(
2017
)
Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes
.
Blood Rev.
31
,
349
361
454
Repsold
,
L.
and
Joubert
,
A.M.
(
2018
)
Eryptosis: an erythrocyte's suicidal type of cell death
.
Biomed. Res. Int.
2018
,
9405617
455
Brun
,
J.F.
,
Varlet-Marie
,
E.
,
Myzia
,
J.
,
de Mauverger
,
E.R.
and
Pretorius
,
E.
(
2022
)
Metabolic influences modulating erythrocyte deformability and eryptosis
.
Metabolites
12
,
4
456
Alzoubi
,
K.
,
Egler
,
J.
,
Abed
,
M.
and
Lang
,
F.
(
2015
)
Enhanced eryptosis following auranofin exposure
.
Cell. Physiol. Biochem.
37
,
1018
1028
457
Lang
,
F.
,
Lang
,
E.
and
Foller
,
M.
(
2012
)
Physiology and pathophysiology of eryptosis
.
Transfus. Med. Hemother.
39
,
308
314
458
Lang
,
E.
and
Lang
,
F.
(
2015
)
Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death
.
Semin. Cell Dev. Biol.
39
,
35
42
459
Lang
,
E.
,
Qadri
,
S.M.
and
Lang
,
F.
(
2012
)
Killing me softly - suicidal erythrocyte death
.
Int. J. Biochem. Cell Biol.
44
,
1236
1243
460
Mameli
,
A.
,
Barcellona
,
D.
and
Marongiu
,
F.
(
2009
)
Rheumatoid arthritis and thrombosis
.
Clin. Exp. Rheumatol.
27
,
846
855
461
Holmqvist
,
M.E.
,
Neovius
,
M.
,
Eriksson
,
J.
,
Mantel
,
Ä
,
Wållberg-Jonsson
,
S.
,
Jacobsson
,
L.T.H.
et al. (
2012
)
Risk of venous thromboembolism in patients with rheumatoid arthritis and association with disease duration and hospitalization
.
J. Am. Med. Assoc.
308
,
1350
1356
462
Choi
,
H.K.
,
Rho
,
Y.H.
,
Zhu
,
Y.
,
Cea-Soriano
,
L.
,
Avina-Zubieta
,
J.A.
and
Zhang
,
Y.
(
2013
)
The risk of pulmonary embolism and deep vein thrombosis in rheumatoid arthritis: a UK population-based outpatient cohort study
.
Ann. Rheum. Dis.
72
,
1182
1187
463
Kim
,
S.C.
,
Schneeweiss
,
S.
,
Liu
,
J.
and
Solomon
,
D.H.
(
2013
)
Risk of venous thromboembolism in patients with rheumatoid arthritis
.
Arthritis Care Res. (Hoboken)
65
,
1600
1607
464
Chung
,
W.S.
,
Peng
,
C.L.
,
Lin
,
C.L.
,
Chang
,
Y.J.
,
Chen
,
Y.F.
,
Chiang
,
J.Y.
et al. (
2014
)
Rheumatoid arthritis increases the risk of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study
.
Ann. Rheum. Dis.
73
,
1774
1780
465
Ungprasert
,
P.
,
Srivali
,
N.
,
Spanuchart
,
I.
,
Thongprayoon
,
C.
and
Knight
,
E.L.
(
2014
)
Risk of venous thromboembolism in patients with rheumatoid arthritis: a systematic review and meta-analysis
.
Clin. Rheumatol.
33
,
297
304
466
Ketfi
,
C.
,
Boutigny
,
A.
,
Mohamedi
,
N.
,
Bouajil
,
S.
,
Magnan
,
B.
,
Amah
,
G.
et al. (
2021
)
Risk of venous thromboembolism in rheumatoid arthritis
.
Joint Bone Spine
88
,
105122
467
Molander
,
V.
,
Bower
,
H.
,
Frisell
,
T.
and
Askling
,
J.
(
2021
)
Risk of venous thromboembolism in rheumatoid arthritis, and its association with disease activity: a nationwide cohort study from Sweden
.
Ann. Rheum. Dis.
80
,
169
175
468
Cui
,
S.
,
Chen
,
S.
,
Li
,
X.
,
Liu
,
S.
and
Wang
,
F.
(
2020
)
Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia
.
J. Thromb. Haemost.
18
,
1421
1424
469
Goldman
,
I.A.
,
Ye
,
K.
and
Scheinfeld
,
M.H.
(
2020
)
Lower-extremity arterial thrombosis associated with COVID-19 is characterized by greater thrombus burden and increased rate of amputation and death
.
Radiology
297
,
E263
E269
470
Sakr
,
Y.
,
Giovini
,
M.
,
Leone
,
M.
,
Pizzilli
,
G.
,
Kortgen
,
A.
,
Bauer
,
M.
et al. (
2020
)
Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review
.
Ann. Intensive Care
10
,
124
471
Gómez
,
C.A.
,
Sun
,
C.K.
,
Tsai
,
I.T.
,
Chang
,
Y.P.
,
Lin
,
M.C.
,
Hung
,
I.Y.
et al. (
2021
)
Mortality and risk factors associated with pulmonary embolism in coronavirus disease 2019 patients: a systematic review and meta-analysis
.
Sci. Rep.
11
,
16025
472
Hesam-Shariati
,
S.
,
Fatehi
,
P.
,
Abouzaripour
,
M.
,
Fathi
,
F.
,
Hesam-Shariati
,
N.
and
Hesam Shariati
,
M.B.
(
2021
)
Increased pulmonary embolism in patients with COVID-19: a case series and literature review
.
Trop. Dis. Travel. Med. Vaccines
7
,
16
473
Husser
,
D.
,
Hohenstein
,
S.
,
Pellissier
,
V.
,
Ueberham
,
L.
,
Konig
,
S.
,
Hindricks
,
G.
et al. (
2021
)
Potential contributors to increased pulmonary embolism hospitalizations during the COVID-19 pandemic: insights from the German-wide Helios Hospital Network
.
Front. Cardiovasc. Med.
8
,
715761
474
Jevnikar
,
M.
,
Sanchez
,
O.
,
Chocron
,
R.
,
Andronikof
,
M.
,
Raphael
,
M.
,
Meyrignac
,
O.
et al. (
2021
)
Prevalence of pulmonary embolism in patients with COVID-19 at the time of hospital admission
.
Eur. Respir. J.
58
,
2100116
475
Miró
,
Ó
,
Jiménez
,
S.
,
Mebazaa
,
A.
,
Freund
,
Y.
,
Burillo-Putze
,
G.
,
Martin
,
A.
et al. (
2021
)
Pulmonary embolism in patients with COVID-19: incidence, risk factors, clinical characteristics, and outcome
.
Eur. Heart J.
42
,
3127
3142
476
Oba
,
S.
,
Hosoya
,
T.
,
Amamiya
,
M.
,
Mitsumura
,
T.
,
Kawata
,
D.
,
Sasaki
,
H.
et al. (
2021
)
Arterial and venous thrombosis complicated in COVID-19: a retrospective single center analysis in Japan
.
Front. Cardiovasc. Med.
8
,
767074
477
Parekh
,
Y.H.
,
Altomare
,
N.J.
,
McDonnell
,
E.P.
,
Blaser
,
M.J.
and
Parikh
,
P.D.
(
2021
)
Recurrence of upper extremity deep vein thrombosis secondary to COVID-19
.
Viruses
13
,
878
478
Porfidia
,
A.
,
Mosoni
,
C.
,
Talerico
,
R.
,
Porceddu
,
E.
,
Lupascu
,
A.
,
Tondi
,
P.
et al. (
2021
)
Pulmonary embolism in COVID-19 patients: which diagnostic algorithm should we use?
Front. Cardiovasc. Med.
8
,
714003
479
Riyahi
,
S.
,
Dev
,
H.
,
Behzadi
,
A.
,
Kim
,
J.
,
Attari
,
H.
,
Raza
,
S.I.
et al. (
2021
)
Pulmonary embolism in hospitalized patients with COVID-19: a multicenter study
.
Radiology
301
,
E426
E433
480
Lund
,
L.C.
,
Hallas
,
J.
,
Nielsen
,
H.
,
Koch
,
A.
,
Mogensen
,
S.H.
,
Brun
,
N.C.
et al. (
2021
)
Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population-based cohort study
.
Lancet Infect. Dis.
21
,
1373
1382
481
Yan
,
Z.
,
Yang
,
M.
and
Lai
,
C.L.
(
2021
)
Long COVID-19 syndrome: a comprehensive review of its effect on various organ systems and recommendation on rehabilitation plans
.
Biomedicines
9
,
966
482
Ponomaryov
,
T.
,
Payne
,
H.
,
Fabritz
,
L.
,
Wagner
,
D.D.
and
Brill
,
A.
(
2017
)
Mast cells granular contents are crucial for deep vein thrombosis in mice
.
Circ. Res.
121
,
941
950
483
Levi
,
M.
and
van der Poll
,
T.
(
2017
)
Coagulation and sepsis
.
Thromb. Res.
149
,
38
44
484
Connors
,
J.M.
and
Levy
,
J.H.
(
2020
)
COVID-19 and its implications for thrombosis and anticoagulation
.
Blood
135
,
2033
2040
485
Whyte
,
C.S.
,
Morrow
,
G.B.
,
Mitchell
,
J.L.
,
Chowdary
,
P.
and
Mutch
,
N.J.
(
2020
)
Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19
.
J. Thromb. Haemost.
18
,
1548
1555
486
van der Slikke
,
E.C.
,
An
,
A.Y.
,
Hancock
,
R.E.W.
and
Bouma
,
H.R.
(
2020
)
Exploring the pathophysiology of post-sepsis syndrome to identify therapeutic opportunities
.
EBioMedicine
61
,
103044
487
Mostel
,
Z.
,
Perl
,
A.
,
Marck
,
M.
,
Mehdi
,
S.F.
,
Lowell
,
B.
,
Bathija
,
S.
et al. (
2019
)
Post-sepsis syndrome - an evolving entity that afflicts survivors of sepsis
.
Mol. Med.
26
,
6
488
Huang
,
C.Y.
,
Daniels
,
R.
,
Lembo
,
A.
,
Hartog
,
C.
,
O'Brien
,
J.
,
Heymann
,
T.
et al. (
2019
)
Life after sepsis: an international survey of survivors to understand the post-sepsis syndrome
.
Int. J. Qual. Health Care
31
,
191
198
489
Zhu
,
X.
,
Wu
,
Y.
,
Lv
,
X.
,
Liu
,
Y.
,
Du
,
G.
,
Li
,
J.
et al. (
2022
)
Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli
.
ACS Synth. Biol.
11
,
1897
1907
490
Shovman
,
O.
,
Tiosano
,
S.
,
Comaneshter
,
D.
,
Cohen
,
A.D.
,
Amital
,
H.
and
Sherf
,
M.
(
2016
)
Aortic aneurysm associated with rheumatoid arthritis: a population-based cross-sectional study
.
Clin. Rheumatol.
35
,
2657
2661
491
Fiani
,
B.
,
Fowler
,
J.B.
,
Figueras
,
R.A.
,
Hessamian
,
K.
,
Mercado
,
N.
,
Vukcevich
,
O.
et al. (
2021
)
Ruptured cerebral aneurysms in COVID-19 patients: a review of literature with case examples
.
Surg. Neurol. Int.
12
,
187
492
Richardson
,
K.L.
,
Jain
,
A.
,
Evans
,
J.
and
Uzun
,
O.
(
2021
)
Giant coronary artery aneurysm as a feature of coronavirus-related inflammatory syndrome
.
BMJ Case Rep.
14
,
e238740
493
Wang
,
L.
,
Zhang
,
S.
,
Ma
,
J.
,
Ni
,
J.
,
Wang
,
J.
,
Li
,
X.
et al. (
2021
)
Kawasaki disease- management strategies given symptoms overlap to COVID-19: a review
.
JNMA J. Nepal. Med. Assoc.
59
,
417
424
494
Western
,
E.
,
Sorteberg
,
A.
,
Brunborg
,
C.
and
Nordenmark
,
T.H.
(
2020
)
Prevalence and predictors of fatigue after aneurysmal subarachnoid hemorrhage
.
Acta Neurochir. (Wien)
162
,
3107
3116
495
Western
,
E.
,
Nordenmark
,
T.H.
,
Sorteberg
,
W.
,
Karic
,
T.
and
Sorteberg
,
A.
(
2021
)
Fatigue after aneurysmal subarachnoid hemorrhage: clinical characteristics and associated factors in patients with good outcome
.
Front. Behav. Neurosci.
15
,
633616
496
Massey
,
P.R.
and
Jones
,
K.M.
(
2020
)
Going viral: a brief history of Chilblain-like skin lesions ("COVID toes") amidst the COVID-19 pandemic
.
Semin. Oncol.
47
,
330
334
497
Micevic
,
G.
,
Morris
,
J.
,
Lee
,
A.I.
and
King
,
B.A.
(
2020
)
Perniolike lesions and coagulopathy in a patient with COVID-19 infection
.
JAAD Case Rep.
6
,
1294
1296
498
Discepolo
,
V.
,
Catzola
,
A.
,
Pierri
,
L.
,
Mascolo
,
M.
,
Della Casa
,
F.
,
Vastarella
,
M.
et al. (
2021
)
Bilateral chilblain-like lesions of the toes characterized by microvascular remodeling in adolescents during the COVID-19 pandemic
.
JAMA Netw. Open.
4
,
e2111369
499
Rocha
,
K.O.
,
Zanuncio
,
V.V.
,
de Freitas
,
C.
,
and Lima
,
B.A.
and
M
,
L.
(
2021
)
"COVID toes": a meta-analysis of case and observational studies on clinical, histopathological, and laboratory findings
.
Pediatr. Dermatol.
38
,
1143
1149
500
Kashetsky
,
N.
,
Mukovozov
,
I.M.
and
Bergman
,
J.
(
2021
)
Chilblain-like lesions (CLL) associated with COVID-19 ("COVID toes"): a systematic review
.
J. Cutan Med. Surg.
25
,
627
633
501
Yilmaz
,
M.M.
,
Szabolcs
,
M.J.
,
Geskin
,
L.J.
and
Niedt
,
G.W.
(
2021
)
An autopsy review: "COVID toes"
.
Am. J. Dermatopathol.
43
,
554
555
502
Kolivras
,
A.
,
Thompson
,
C.
,
Pastushenko
,
I.
,
Mathieu
,
M.
,
Bruderer
,
P.
,
de Vicq
,
M.
et al. (
2022
)
A clinicopathological description of COVID-19-induced chilblains (COVID-toes) correlated with a published literature review
.
J. Cutan. Pathol.
49
,
17
28
503
Mehta
,
P.
,
Bunker
,
C.B.
,
Ciurtin
,
C.
,
Porter
,
J.C.
,
Chambers
,
R.C.
,
Papdopoulou
,
C.
et al. (
2021
)
Chilblain-like acral lesions in long COVID-19: management and implications for understanding microangiopathy
.
Lancet Infect. Dis.
21
,
912
504
André
,
R.
,
Hsieh
,
A.
and
Trellu
,
L.T.
(
2022
)
Chronic acral lesions ("COVID toes"): to add to long post- COVID-19 syndrome?
Angiology
33197211068938
505
Nirenberg
,
M.S.
,
Requena
,
L.
,
Santonja
,
C.
,
Smith
,
G.T.
and
McClain
,
S.A.
(
2022
)
Histopathology of Persistent long COVID Toe: a case report
.
J. Cutan. Pathol.
9
,
791
794
506
Frumholtz
,
L.
,
Bouaziz
,
J.D.
,
Battistella
,
M.
,
Hadjadj
,
J.
,
Chocron
,
R.
,
Bengoufa
,
D.
et al. (
2021
)
Type I interferon response and vascular alteration in chilblain-like lesions during the COVID-19 outbreak
.
Br. J. Dermatol.
185
,
1176
1185
507
Çakmak
,
F.
,
Demirbuga
,
A.
,
Demirkol
,
D.
,
Gümüş
,
S.
,
Torun
,
S.H.
,
Kayaalp
,
G.K.
et al. (
2021
)
Nailfold capillaroscopy: a sensitive method for evaluating microvascular involvement in children with SARS-CoV-2 infection
.
Microvasc. Res.
138
,
104196
508
Natalello
,
G.
,
De Luca
,
G.
,
Gigante
,
L.
,
Campochiaro
,
C.
,
De Lorenzis
,
E.
,
Verardi
,
L.
et al. (
2021
)
Nailfold capillaroscopy findings in patients with coronavirus disease 2019: broadening the spectrum of COVID-19 microvascular involvement
.
Microvasc. Res.
133
,
104071
509
Sulli
,
A.
,
Gotelli
,
E.
,
Bica
,
P.F.
,
Schiavetti
,
I.
,
Pizzorni
,
C.
,
Aloe
,
T.
et al. (
2022
)
Detailed videocapillaroscopic microvascular changes detectable in adult COVID-19 survivors
.
Microvasc. Res.
142
,
104361
510
Madamanchi
,
N.R.
,
Vendrov
,
A.
and
Runge
,
M.S.
(
2005
)
Oxidative stress and vascular disease
.
Arterioscler. Thromb. Vasc. Biol.
25
,
29
38
511
Kane
,
A.D.
,
Kothmann
,
E.
and
Giussani
,
D.A.
(
2020
)
Detection and response to acute systemic hypoxia
.
BJA Educ.
20
,
58
64
512
Cavezzi
,
A.
,
Troiani
,
E.
and
Corrao
,
S.
(
2020
)
COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review
.
Clin. Pract.
10
,
1271
513
Negri
,
E.M.
,
Piloto
,
B.M.
,
Morinaga
,
L.K.
,
Jardim
,
C.V.P.
,
Lamy
,
S.A.E.
,
Ferreira
,
M.A.
et al. (
2020
)
Heparin therapy improving hypoxia in COVID-19 patients - a case series
.
Front. Physiol.
11
,
573044
514
Somers
,
V.K.
,
Kara
,
T.
and
Xie
,
J.
(
2020
)
Progressive hypoxia: a pivotal pathophysiologic mechanism of COVID-19 pneumonia
.
Mayo Clin. Proc.
95
,
2339
2342
515
Alvis
,
B.
,
Vaughn
,
L.
,
Schmeckpeper
,
J.
,
Huston
,
J.
,
Case
,
M.
,
Semler
,
M.
et al. (
2021
)
Respiratory non-invasive venous waveform analysis for assessment of respiratory distress in coronavirus disease 2019 patients: an observational study
.
Crit. Care Explor.
3
,
e0539
516
Böning
,
D.
,
Kuebler
,
W.M.
and
Bloch
,
W.
(
2021
)
The oxygen dissociation curve of blood in COVID-19
.
Am. J. Physiol. Lung Cell Mol. Physiol.
321
,
L349
L357
517
Brouqui
,
P.
,
Amrane
,
S.
,
Million
,
M.
,
Cortaredona
,
S.
,
Parola
,
P.
,
Lagier
,
J.C.
et al. (
2021
)
Asymptomatic hypoxia in COVID-19 is associated with poor outcome
.
Int. J. Infect. Dis.
102
,
233
238
518
Mejia
,
F.
,
Medina
,
C.
,
Cornejo
,
E.
,
Morello
,
E.
,
Vásquez
,
S.
,
Alave
,
J.
et al. (
2020
)
Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru
.
PLoS One
15
,
e0244171
519
Nechipurenko
,
Y.D.
,
Semyonov
,
D.A.
,
Lavrinenko
,
I.A.
,
Lagutkin
,
D.A.
,
Generalov
,
E.A.
,
Zaitceva
,
A.Y.
et al. (
2021
)
The role of acidosis in the pathogenesis of severe forms of COVID-19
.
Biology (Basel)
10
,
852
520
Páez-Franco
,
J.C.
,
Torres-Ruiz
,
J.
,
Sosa-Hernández
,
V.A.
,
Cervantes-Díaz
,
R.
,
Romero-Ramírez
,
S.
,
Pérez-Fragoso
,
A.
et al. (
2021
)
Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients
.
Sci. Rep.
11
,
6350
521
Rahman
,
A.
,
Tabassum
,
T.
,
Araf
,
Y.
,
Al Nahid
,
A.
,
Ullah
,
M.A.
and
Hosen
,
M.J.
(
2021
)
Silent hypoxia in COVID-19: pathomechanism and possible management strategy
.
Mol. Biol. Rep.
48
,
3863
3869
522
Østergaard
,
L.
(
2020
)
Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment
.
J. Appl. Physiol.
129
,
1413
1421
523
Herrmann
,
J.
,
Mori
,
V.
,
Bates
,
J.H.T.
and
Suki
,
B.
(
2020
)
Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia
.
Nat. Commun.
11
,
4883
524
Olumuyiwa-Akeredolu
,
O.O.
and
Pretorius
,
E.
(
2016
)
Rheumatoid arthritis: notable biomarkers linking to chronic systemic conditions and cancer
.
Curr. Pharm. Des.
22
,
918
924
525
Mantel
,
Ä
,
Holmqvist
,
M.
,
Andersson
,
D.C.
,
Lund
,
L.H.
and
Askling
,
J.
(
2017
)
Association between rheumatoid arthritis and risk of ischemic and nonischemic heart failure
.
J. Am. Coll. Cardiol.
69
,
1275
1285
526
Bezuidenhout
,
J.
,
Venter
,
C.
,
Roberts
,
T.
,
Tarr
,
G.
,
Kell
,
D.
and
Pretorius
,
E.
(
2020
)
The atypical fibrin fibre network in rheumatoid arthritis and its relation to autoimmunity, inflammation and thrombosis
.
bioRxiv
2020.2005.2028.121301v121301
527
Mirabello
,
V.
,
Cortezon-Tamarit
,
F.
and
Pascu
,
S.I.
(
2018
)
Oxygen sensing, hypoxia tracing and in vivo imaging with functional metalloprobes for the early detection of non-communicable diseases
.
Front. Chem.
6
,
27
528
Zheng
,
X.C.
,
Wang
,
X.
,
Mao
,
H.
,
Wu
,
W.
,
Liu
,
B.R.
and
Jiang
,
X.Q.
(
2015
)
Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo
.
Nat. Commun.
6
,
5834
529
Ziello
,
J.E.
,
Jovin
,
I.S.
and
Huang
,
Y.
(
2007
)
Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia
.
Yale J. Biol. Med.
80
,
51
60
530
Batie
,
M.
and
Rocha
,
S.
(
2020
)
Gene transcription and chromatin regulation in hypoxia
.
Biochem. Soc. Trans.
48
,
1121
1128
531
Frost
,
J.
,
Frost
,
M.
,
Batie
,
M.
,
Jiang
,
H.
and
Rocha
,
S.
(
2021
)
Roles of HIF and 2-oxoglutarate-dependent dioxygenases in controlling gene expression in hypoxia
.
Cancers (Basel)
13
,
350
532
Betteridge
,
D.J.
(
2000
)
What is oxidative stress?
Metabolism
49
,
3
8
533
Butterfield
,
D.A.
(
2002
)
Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review
.
Free Radic. Res.
36
,
1307
1313
534
Cutler
,
R.G.
and
Rodriguez
,
H.
(
2002
)
Critical reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostics And Intervention
,
World Scientific
,
Singapore
535
Maritim
,
A.C.
,
Sanders
,
R.A.
and
Watkins
, III,
J.B.
(
2003
)
Diabetes, oxidative stress, and antioxidants: a review
.
J. Biochem. Mol. Toxicol.
17
,
24
38
536
Uttara
,
B.
,
Singh
,
A.V.
,
Zamboni
,
P.
and
Mahajan
,
R.T.
(
2009
)
Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options
.
Curr. Neuropharmacol.
7
,
65
74
537
Valko
,
M.
,
Leibfritz
,
D.
,
Moncol
,
J.
,
Cronin
,
M.T.D.
,
Mazur
,
M.
and
Telser
,
J.
(
2007
)
Free radicals and antioxidants in normal physiological functions and human disease
.
Int. J. Biochem. Cell Biol.
39
,
44
84
538
Halliwell
,
B.
(
2011
)
Free radicals and antioxidants - quo vadis?
Trends Pharmacol. Sci.
32
,
125
130
539
Halliwell
,
B.
and
Gutteridge
,
J.M.C.
(
2015
)
Free Radicals in Biology and Medicine
, 5th Ed.,
Oxford University Press
,
Oxford
540
Pisoschi
,
A.M.
and
Pop
,
A.
(
2015
)
The role of antioxidants in the chemistry of oxidative stress: a review
.
Eur. J. Med. Chem.
97
,
55
74
541
Pizzino
,
G.
,
Irrera
,
N.
,
Cucinotta
,
M.
,
Pallio
,
G.
,
Mannino
,
F.
,
Arcoraci
,
V.
et al. (
2017
)
Oxidative stress: harms and benefits for human health
.
Oxidative Med. Cell. Longev.
2017
,
8416763
542
Siti
,
H.N.
,
Kamisah
,
Y.
and
Kamsiah
,
J.
(
2015
)
The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review)
.
Vascul. Pharmacol.
71
,
40
56
543
Poprac
,
P.
,
Jomova
,
K.
,
Simunkova
,
M.
,
Kollar
,
V.
,
Rhodes
,
C.J.
and
Valko
,
M.
(
2017
)
Targeting free radicals in oxidative stress-related human diseases
.
Trends Pharmacol. Sci.
38
,
592
607
544
Simunkova
,
M.
,
Alwasel
,
S.H.
,
Alhazza
,
I.M.
,
Jomova
,
K.
,
Kollar
,
V.
,
Rusko
,
M.
et al. (
2019
)
Management of oxidative stress and other pathologies in Alzheimer's disease
.
Arch. Toxicol.
93
,
2491
2513
545
Pisoschi
,
A.M.
,
Pop
,
A.
,
Iordache
,
F.
,
Stanca
,
L.
,
Predoi
,
G.
and
Serban
,
A.I.
(
2021
)
Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status
.
Eur. J. Med. Chem.
209
,
112891
546
Kennedy
,
G.
,
Spence
,
V.A.
,
McLaren
,
M.
,
Hill
,
A.
,
Underwood
,
C.
and
Belch
,
J.J.
(
2005
)
Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms
.
Free Radic. Biol. Med.
39
,
584
589
547
Paul
,
B.D.
,
Lemle
,
M.D.
,
Komaroff
,
A.L.
and
Snyder
,
S.H.
(
2021
)
Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome
.
Proc. Natl Acad. Sci. U.S.A.
118
,
e2024358118
548
Toogood
,
P.L.
,
Clauw
,
D.J.
,
Phadke
,
S.
and
Hoffman
,
D.
(
2021
)
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): where will the drugs come from?
Pharmacol. Res.
165
,
105465
549
Pucino
,
V.
,
Certo
,
M.
,
Bulusu
,
V.
,
Cucchi
,
D.
,
Goldmann
,
K.
,
Pontarini
,
E.
et al. (
2019
)
Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring
.
Cell Metab.
30
,
1055
1074.e1058
550
Pucino
,
V.
,
Certo
,
M.
,
Varricchi
,
G.
,
Marone
,
G.
,
Ursini
,
F.
,
Rossi
,
F.W.
et al. (
2020
)
Metabolic checkpoints in rheumatoid arthritis
.
Front. Physiol.
11
,
347
551
Qiu
,
J.
,
Wu
,
B.
,
Goodman
,
S.B.
,
Berry
,
G.J.
,
Goronzy
,
J.J.
and
Weyand
,
C.M.
(
2021
)
Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis
.
Front. Immunol.
12
,
652771
552
Shungu
,
D.C.
,
Weiduschat
,
N.
,
Murrough
,
J.W.
,
Mao
,
X.
,
Pillemer
,
S.
,
Dyke
,
J.P.
et al. (
2012
)
Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology
.
NMR Biomed.
25
,
1073
1087
553
Wallis
,
A.
,
Ball
,
M.
,
McKechnie
,
S.
,
Butt
,
H.
,
Lewis
,
D.P.
and
Bruck
,
D.
(
2017
)
Examining clinical similarities between myalgic encephalomyelitis/chronic fatigue syndrome and D-lactic acidosis: a systematic review
.
J. Transl. Med.
15
,
129
554
Ghali
,
A.
,
Lacout
,
C.
,
Ghali
,
M.
,
Gury
,
A.
,
Beucher
,
A.B.
,
Lozac'h
,
P.
et al. (
2019
)
Elevated blood lactate in resting conditions correlate with post-exertional malaise severity in patients with myalgic encephalomyelitis/chronic fatigue syndrome
.
Sci. Rep.
9
,
18817
555
Lien
,
K.
,
Johansen
,
B.
,
Veierød
,
M.B.
,
Haslestad
,
A.S.
,
Bøhn
,
S.K.
,
Melsom
,
M.N.
et al. (
2019
)
Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome
.
Physiol. Rep.
7
,
e14138
556
Nilsson
,
I.
,
Palmer
,
J.
,
Apostolou
,
E.
,
Gottfries
,
C.G.
,
Rizwan
,
M.
,
Dahle
,
C.
et al. (
2020
)
Metabolic dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome not due to anti-mitochondrial antibodies
.
Front. Med. (Lausanne)
7
,
108
557
Murrough
,
J.W.
,
Mao
,
X.
,
Collins
,
K.A.
,
Kelly
,
C.
,
Andrade
,
G.
,
Nestadt
,
P.
et al. (
2010
)
Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder
.
NMR Biomed.
23
,
643
650
558
Bruno
,
R.R.
,
Wernly
,
B.
,
Flaatten
,
H.
,
Fjolner
,
J.
,
Artigas
,
A.
,
Bollen Pinto
,
B.
et al. (
2021
)
Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: results from an international observational study of 2860 patients
.
Ann. Intensive Care
11
,
128
559
Iepsen
,
U.W.
,
Plovsing
,
R.R.
,
Tjelle
,
K.
,
Foss
,
N.B.
,
Meyhoff
,
C.S.
,
Ryrsø
,
C.K.
et al. (
2021
)
The role of lactate in sepsis and COVID-19: perspective from contracting skeletal muscle metabolism
.
Exp. Physiol.
107
,
665
673
560
Velavan
,
T.P.
,
Kieu Linh
,
L.T.
,
Kreidenweiss
,
A.
,
Gabor
,
J.
,
Krishna
,
S.
and
Kremsner
,
P.G.
(
2021
)
Longitudinal monitoring of lactate in hospitalized and ambulatory COVID-19 patients
.
Am. J. Trop. Med. Hyg.
104
,
1041
1044
561
Carpenè
,
G.
,
Onorato
,
D.
,
Nocini
,
R.
,
Fortunato
,
G.
,
Rizk
,
J.G.
,
Henry
,
B.M.
et al. (
2022
)
Blood lactate concentration in COVID-19: a systematic literature review
.
Clin. Chem. Lab. Med.
60
,
332
337
562
Santinelli
,
L.
,
Laghi
,
L.
,
Innocenti
,
G.P.
,
Pinacchio
,
C.
,
Vassalini
,
P.
,
Celani
,
L.
et al. (
2021
)
Oral bacteriotherapy reduces the occurrence of chronic fatigue in COVID-19 patients
.
Front. Nutr.
8
,
756177
563
Herce-Pagliai
,
C.
,
Kotecha
,
S.
and
Shuker
,
D.E.G.
(
1998
)
Analytical methods for 3-nitrotyrosine as a marker of exposure to reactive nitrogen species: a review
.
Nitric Oxide-Biol. Chem.
2
,
324
336
564
Bian
,
K.
,
Gao
,
Z.
,
Weisbrodt
,
N.
and
Murad
,
F.
(
2003
)
The nature of heme/iron-induced protein tyrosine nitration
.
Proc. Natl Acad. Sci. U.S.A.
100
,
5712
5717
565
Duncan
,
M.W.
(
2003
)
A review of approaches to the analysis of 3-nitrotyrosine
.
Amino Acids
25
,
351
361
566
Ryberg
,
H.
and
Caidahl
,
K.
(
2007
)
Chromatographic and mass spectrometric methods for quantitative determination of 3-nitrotyrosine in biological samples and their application to human samples
.
J. Chromatogr. B
851
,
160
171
567
Campolo
,
N.
,
Issoglio
,
F.M.
,
Estrin
,
D.A.
,
Bartesaghi
,
S.
and
Radi
,
R.
(
2020
)
3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function
.
Essays Biochem.
64
,
111
133
568
Janero
,
D.R.
(
1990
)
Malondialdehyde and thiobarbituric acid reactivity as diagnostic indexes of lipid peroxidation and peroxidative tissue injury
.
Free Radic. Biol. Med.
9
,
515
540
569
Del Rio
,
D.
,
Stewart
,
A.J.
and
Pellegrini
,
N.
(
2005
)
A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress
.
Nutr. Metab. Cardiovasc. Dis.
15
,
316
328
570
Aust
,
A.E.
and
Eveleigh
,
J.F.
(
1999
)
Mechanisms of DNA oxidation
.
Proc. Soc. Exp. Biol. Med.
222
,
246
252
571
Cooke
,
M.S.
,
Lunec
,
J.
and
Evans
,
M.D.
(
2002
)
Progress in the analysis of urinary oxidative DNA damage
.
Free Radic. Biol. Med.
33
,
1601
1614
572
Dizdaroglu
,
M.
,
Jaruga
,
P.
,
Birincioglu
,
M.
and
Rodriguez
,
H.
(
2002
)
Free radical-induced damage to DNA: mechanisms and measurement
.
Free Radic. Biol. Med.
32
,
1102
1115
573
Neeley
,
W.L.
and
Essigmann
,
J.M.
(
2006
)
Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products
.
Chem. Res. Toxicol.
19
,
491
505
574
Hwang
,
E.S.
and
Bowen
,
P.E.
(
2007
)
DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment
.
Crit. Rev. Food Sci. Nutr.
47
,
27
50
575
Kageyama
,
Y.
,
Takahashi
,
M.
,
Ichikawa
,
T.
,
Torikai
,
E.
and
Nagano
,
A.
(
2008
)
Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis
.
Clin. Exp. Rheumatol.
26
,
73
80
576
Pemberton
,
P.W.
,
Ahmad
,
Y.
,
Bodill
,
H.
,
Lokko
,
D.
,
Hider
,
S.L.
,
Yates
,
A.P.
et al. (
2009
)
Biomarkers of oxidant stress, insulin sensitivity and endothelial activation in rheumatoid arthritis: a cross-sectional study of their association with accelerated atherosclerosis
.
BMC Res. Notes
2
,
83
577
Fu
,
J.
,
Schoeman
,
J.C.
,
Harms
,
A.C.
,
van Wietmarschen
,
H.A.
,
Vreeken
,
R.J.
,
Berger
,
R.
et al. (
2016
)
Metabolomics profiling of the free and total oxidised lipids in urine by LC-MS/MS: application in patients with rheumatoid arthritis
.
Anal. Bioanal. Chem.
408
,
6307
6319
578
Bowers
,
I.
and
Subedi
,
B.
(
2021
)
Isoprostanes in wastewater as biomarkers of oxidative stress during COVID-19 pandemic
.
Chemosphere
271
,
129489
579
Grossini
,
E.
,
Concina
,
D.
,
Rinaldi
,
C.
,
Russotto
,
S.
,
Garhwal
,
D.
,
Zeppegno
,
P.
et al. (
2021
)
Association between plasma redox state/mitochondria function and a Flu-like syndrome/COVID-19 in the elderly admitted to a long-term care unit
.
Front. Physiol.
12
,
707587
580
Kumar
,
P.
,
Osahon
,
O.
,
Vides
,
D.B.
,
Hanania
,
N.
,
Minard
,
C.G.
and
Sekhar
,
R.V.
(
2022
)
Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with COVID-19: implications for GlyNAC (glycine and N-acetylcysteine) supplementation
.
Antioxidants (Basel)
11
,
50
581
Soto
,
M.E.
,
Guarner-Lans
,
V.
,
Díaz-Díaz
,
E.
,
Manzano-Pech
,
L.
,
Palacios-Chavarria
,
A.
,
Valdez-Vázquez
,
R.R.
et al. (
2022
)
Hyperglycemia and loss of redox homeostasis in COVID-19 patients
.
Cells
11
,
932
582
Dominic
,
P.
,
Ahmad
,
J.
,
Bhandari
,
R.
,
Pardue
,
S.
,
Solorzano
,
J.
,
Jaisingh
,
K.
et al. (
2021
)
Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19
.
Redox Biol.
43
,
101982
583
Hayden
,
M.R.
(
2020
)
An immediate and long-term complication of COVID-19 May be type 2 diabetes mellitus: the central role of beta-cell dysfunction, apoptosis and exploration of possible mechanisms
.
Cells
9
,
2475
584
Misko
,
T.P.
,
Radabaugh
,
M.R.
,
Highkin
,
M.
,
Abrams
,
M.
,
Friese
,
O.
,
Gallavan
,
R.
et al. (
2013
)
Characterization of nitrotyrosine as a biomarker for arthritis and joint injury
.
Osteoarthr. Cartil.
21
,
151
156
585
Khan
,
M.A.
,
Alam
,
K.
,
Zafaryab
,
M.
and
Rizvi
,
M.M.A.
(
2017
)
Peroxynitrite-modified histone as a pathophysiological biomarker in autoimmune diseases
.
Biochimie
140
,
1
9
586
Sá da Fonseca
,
L.J.
,
Nunes-Souza
,
V.
,
Goulart
,
M.O.F.
and
Rabelo
,
L.A.
(
2019
)
Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies
.
Oxid. Med. Cell. Longev.
2019
,
7536805
587
Steinz
,
M.M.
,
Persson
,
M.
,
Aresh
,
B.
,
Olsson
,
K.
,
Cheng
,
A.J.
,
Ahlstrand
,
E.
et al. (
2019
)
Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis
.
JCI Insight
4
,
e126347
588
Maes
,
M.
,
Mihaylova
,
I.
and
Leunis
,
J.C.
(
2006
)
Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins
.
Neuro Endocrinol. Lett.
27
,
615
621
589
Veselinovic
,
M.
,
Barudzic
,
N.
,
Vuletic
,
M.
,
Zivkovic
,
V.
,
Tomic-Lucic
,
A.
,
Djuric
,
D.
et al. (
2014
)
Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity
.
Mol. Cell. Biochem.
391
,
225
232
590
García-González
,
A.
,
Gaxiola-Robles
,
R.
and
Zenteno-Savín
,
T.
(
2015
)
Oxidative stress in patients with rheumatoid arthritis
.
Rev. Invest. Clin.
67
,
46
53
591
Mititelu
,
R.R.
,
Pădureanu
,
R.
,
Băcănoiu
,
M.
,
Pădureanu
,
V.
,
Docea
,
A.O.
,
Calina
,
D.
et al. (
2020
)
Inflammatory and oxidative
stress Markers-Mirror tools in rheumatoid arthritis
.
Biomedicines
8
, 125
592
Richards
,
R.S.
,
Roberts
,
T.K.
,
McGregor
,
N.R.
,
Dunstan
,
R.H.
and
Butt
,
H.L.
(
2000
)
Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome
.
Redox Rep.
5
,
35
41
593
Jammes
,
Y.
,
Steinberg
,
J.G.
and
Delliaux
,
S.
(
2013
)
Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins
.
Open J. Intern. Med.
272
,
74
84
594
Fenouillet
,
E.
,
Vigouroux
,
A.
,
Steinberg
,
J.G.
,
Chagvardieff
,
A.
,
Retornaz
,
F.
,
Guieu
,
R.
et al. (
2016
)
Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients
.
J. Transl. Med.
14
,
251
595
Brkic
,
S.
,
Tomic
,
S.
,
Maric
,
D.
,
Novakov Mikic
,
A.
and
Turkulov
,
V.
(
2010
)
Lipid peroxidation is elevated in female patients with chronic fatigue syndrome
.
Med. Sci. Monit.
16
,
CR628
CR632
596
Liu
,
T.
,
Zhang
,
L.
,
Joo
,
D.
and
Sun
,
S.C.
(
2017
)
NF-kappaB signaling in inflammation
.
Signal. Transduct. Target. Ther
2
,
17023
597
Ma
,
Q.
(
2013
)
Role of Nrf2 in oxidative stress and toxicity
.
Annu. Rev. Pharmacol. Toxicol.
53
,
401
426
598
Kerins
,
M.J.
and
Ooi
,
A.
(
2018
)
The roles of NRF2 in modulating cellular iron homeostasis
.
Antioxid. Redox Signal.
29
,
1756
1773
599
Schreck
,
R.
,
Albermann
,
K.
and
Baeuerle
,
P.A.
(
1992
)
Nuclear factor kappa-B - an oxidative stress-responsive transcription factor of eukaryotic cells (a review)
.
Free Rad. Res. Commun.
17
,
221
237
600
D'Ignazio
,
L.
and
Rocha
,
S.
(
2016
)
Hypoxia induced NF-kappaB
.
Cells
5
,
10
601
Sun
,
Y.
and
Oberley
,
L.W.
(
1996
)
Redox regulation of transcriptional activators
.
Free Radic. Biol. Med.
21
,
335
348
602
Flohé
,
L.
,
Brigelius-Flohé
,
R.
,
Saliou
,
C.
,
Traber
,
M.G.
and
Packer
,
L.
(
1997
)
Redox regulation of NF-kappa B activation
.
Free Radi. Biol. Med.
22
,
1115
1126
603
Kabe
,
Y.
,
Ando
,
K.
,
Hirao
,
S.
,
Yoshida
,
M.
and
Handa
,
H.
(
2005
)
Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus
.
Antioxid. Redox Signal.
7
,
395
403
604
Schmidlin
,
C.J.
,
Dodson
,
M.B.
,
Madhavan
,
L.
and
Zhang
,
D.D.
(
2019
)
Redox regulation by NRF2 in aging and disease
.
Free Radic. Biol. Med.
134
,
702
707
605
Rathee
,
P.
,
Chaudhary
,
H.
,
Rathee
,
S.
,
Rathee
,
D.
,
Kumar
,
V.
and
Kohli
,
K.
(
2009
)
Mechanism of action of flavonoids as anti-inflammatory agents: a review
.
Inflamm. Allergy Drug Targets
8
,
229
235
606
Choy
,
K.W.
,
Murugan
,
D.
,
Leong
,
X.F.
,
Abas
,
R.
,
Alias
,
A.
and
Mustafa
,
M.R.
(
2019
)
Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFkappaB) signaling in cardiovascular diseases: a mini review
.
Front. Pharmacol.
10
,
1295
607
D'Ignazio
,
L.
,
Bandarra
,
D.
and
Rocha
,
S.
(
2016
)
NF-kappaB and HIF crosstalk in immune responses
.
FEBS J.
283
,
413
424
608
D'Ignazio
,
L.
,
Batie
,
M.
and
Rocha
,
S.
(
2017
)
Hypoxia and inflammation in cancer, focus on HIF and NF-kappaB
.
Biomedicines
5
,
21
609
Biddlestone
,
J.
,
Bandarra
,
D.
and
Rocha
,
S.
(
2015
)
The role of hypoxia in inflammatory disease (review)
.
Int. J. Mol. Med.
35
,
859
869
610
Nelson
,
D.E.
,
Ihekwaba
,
A.E.C.
,
Elliott
,
M.
,
Gibney
,
C.A.
,
Foreman
,
B.E.
,
Nelson
,
G.
et al. (
2004
)
Oscillations in NF-B signalling control the dynamics of gene expression
.
Science
306
,
704
708
611
Kell
,
D.B.
(
2006
)
Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture
.
FEBS J.
273
,
873
894
612
Ashall
,
L.
,
Horton
,
C.A.
,
Nelson
,
D.E.
,
Paszek
,
P.
,
Ryan
,
S.
,
Sillitoe
,
K.
et al. (
2009
)
Pulsatile stimulation determines timing and specificity of NFkappa-B-dependent transcription
.
Science
324
,
242
246
613
Xue
,
M.
,
Momiji
,
H.
,
Rabbani
,
N.
,
Bretschneider
,
T.
,
Rand
,
D.A.
and
Thornalley
,
P.J.
(
2015
)
Frequency modulated translocational oscillations of Nrf2, a transcription factor functioning like a wireless sensor
.
Biochem. Soc. Trans.
43
,
669
673
614
Xue
,
M.
,
Momiji
,
H.
,
Rabbani
,
N.
,
Barker
,
G.
,
Bretschneider
,
T.
,
Shmygol
,
A.
et al. (
2015
)
Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response
.
Antioxid. Redox Signal.
23
,
613
629
615
Frangogiannis
,
N.G.
,
Smith
,
C.W.
and
Entman
,
M.L.
(
2002
)
The inflammatory response in myocardial infarction
.
Cardiovasc Res.
53
,
31
47
616
Marchant
,
D.J.
,
Boyd
,
J.H.
,
Lin
,
D.C.
,
Granville
,
D.J.
,
Garmaroudi
,
F.S.
and
McManus
,
B.M.
(
2012
)
Inflammation in myocardial diseases
.
Circ. Res.
110
,
126
144
617
Slegtenhorst
,
B.R.
,
Dor
,
F.J.
,
Rodriguez
,
H.
,
Voskuil
,
F.J.
and
Tullius
,
S.G.
(
2014
)
Ischemia/reperfusion injury and its consequences on immunity and inflammation
.
Curr. Transplant. Rep.
1
,
147
154
618
Toldo
,
S.
,
Mauro
,
A.G.
,
Cutter
,
Z.
and
Abbate
,
A.
(
2018
)
Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury
.
Am. J. Physiol. Heart Circ. Physiol.
315
,
H1553
H1568
619
Soares
,
R.O.S.
,
Losada
,
D.M.
,
Jordani
,
M.C.
,
Évora
,
P.
and
Castro-E-Silva
,
O.
(
2019
)
Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies
.
Int. J. Mol. Sci
20
,
5034
620
Sánchez-Hernández
,
C.D.
,
Torres-Alarcón
,
L.A.
,
González-Cortés
,
A.
and
Peón
,
A.N.
(
2020
)
Ischemia/Reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches
.
Mediat. Inflamm.
2020
,
8405370
621
Afrin
,
L.B.
,
Ackerley
,
M.B.
,
Bluestein
,
L.S.
,
Brewer
,
J.H.
,
Brook
,
J.B.
,
Buchanan
,
A.D.
et al. (
2021
)
Diagnosis of mast cell activation syndrome: a global "consensus-2"
.
Diagnosis (Berl.)
8
,
137
152
622
Conti
,
P.
,
Caraffa
,
A.
,
Tete
,
G.
,
Gallenga
,
C.E.
,
Ross
,
R.
,
Kritas
,
S.K.
et al. (
2020
)
Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19
.
J. Biol. Regul. Homeost. Agents
34
,
1629
1632
623
Theoharides
,
T.C.
and
Conti
,
P.
(
2020
)
COVID-19 and multisystem inflammatory syndrome, or is it mast cell activation syndrome?
J. Biol. Regul. Homeost. Agents
34
,
1633
1636
624
Gebremeskel
,
S.
,
Schanin
,
J.
,
Coyle
,
K.M.
,
Butuci
,
M.
,
Luu
,
T.
,
Brock
,
E.C.
et al. (
2021
)
Mast cell and eosinophil activation are associated with COVID-19 and TLR-mediated viral inflammation: implications for an anti-Siglec-8 antibody
.
Front. Immunol.
12
,
650331
625
Afrin
,
L.B.
,
Butterfield
,
J.H.
,
Raithel
,
M.
and
Molderings
,
G.J.
(
2016
)
Often seen, rarely recognized: mast cell activation disease--a guide to diagnosis and therapeutic options
.
Ann. Med.
48
,
190
201
626
Afrin
,
L.B.
,
Weinstock
,
L.B.
and
Molderings
,
G.J.
(
2020
)
COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in mast cell activation syndrome
.
Int. J. Infect. Dis.
100
,
327
332
627
Weinstock
,
L.B.
,
Brook
,
J.B.
,
Walters
,
A.S.
,
Goris
,
A.
,
Afrin
,
L.B.
and
Molderings
,
G.J.
(
2021
)
Mast cell activation symptoms are prevalent in long-COVID
.
Int. J. Infect. Dis.
112
,
217
226
628
Wechsler
,
J.B.
,
Butuci
,
M.
,
Wong
,
A.
,
Kamboj
,
A.P.
and
Youngblood
,
B.A.
(
2022
)
Mast cell activation is associated with post-acute COVID-19 syndrome
.
Allergy
77
,
1288
1291
629
Singh
,
M.
and
Saini
,
H.K.
(
2003
)
Resident cardiac mast cells and ischemia-reperfusion injury
.
J. Cardiovasc. Pharmacol. Ther.
8
,
135
148
630
Yang
,
M.Q.
,
Ma
,
Y.Y.
,
Tao
,
S.F.
,
Ding
,
J.
,
Rao
,
L.H.
,
Jiang
,
H.
et al. (
2014
)
Mast cell degranulation promotes ischemia-reperfusion injury in rat liver
.
J. Surg. Res.
186
,
170
178
631
Yang
,
M.Q.
,
Ma
,
Y.Y.
,
Ding
,
J.
and
Li
,
J.Y.
(
2014
)
The role of mast cells in ischemia and reperfusion injury
.
Inflamm. Res.
63
,
899
905
632
He
,
Z.
,
Li
,
Y.
,
Ma
,
S.
,
Yang
,
M.
,
Ma
,
Y.
,
Ma
,
C.
et al. (
2018
)
Degranulation of gastrointestinal mast cells contributes to hepatic ischemia-reperfusion injury in mice
.
Clin. Sci. (Lond.)
132
,
2241
2259
633
He
,
Z.
,
Ma
,
C.
,
Yu
,
T.
,
Song
,
J.
,
Leng
,
J.
,
Gu
,
X.
et al. (
2019
)
Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury
.
Exp Cell Res.
376
,
227
235
634
Meng
,
S.
,
Sun
,
X.
,
Juan
,
Z.
,
Wang
,
M.
,
Wang
,
R.
,
Sun
,
L.
et al. (
2021
)
Clemastine fumarate attenuates myocardial ischemia reperfusion injury through inhibition of mast cell degranulation
.
Front. Pharmacol.
12
,
704852
635
DeTurk
,
S.
,
Reddy
,
S.
,
Pellegrino
,
A.N.
and
Wilson
,
J
. (
2019
) Anaphylactic shock. In
Clinical Management of Shock - The Science and Art of Physiological Restoration
(
Stawicki
,
S.P.
and
Swaroop
,
M.
, eds),
IntechOpen
,
London
636
Demopoulos
,
C.
,
Antonopoulou
,
S.
and
Theoharides
,
T.C.
(
2020
)
COVID-19, microthromboses, inflammation, and platelet activating factor
.
Biofactors
46
,
927
933
637
Kempuraj
,
D.
,
Selvakumar
,
G.P.
,
Ahmed
,
M.E.
,
Raikwar
,
S.P.
,
Thangavel
,
R.
,
Khan
,
A.
et al. (
2020
)
COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation
.
Neuroscientist
26
,
402
414
638
Zaid
,
Y.
,
Puhm
,
F.
,
Allaeys
,
I.
,
Naya
,
A.
,
Oudghiri
,
M.
,
Khalki
,
L.
et al. (
2020
)
Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19
.
Circ. Res.
1494
1418
639
Jevtic
,
S.D.
and
Nazy
,
I.
(
2022
)
The COVID complex: a review of platelet activation and immune complexes in COVID-19
.
Front. Immunol.
13
,
807934
640
Forde
,
R.C.
and
Fitzgerald
,
D.J.
(
1997
)
Reactive oxygen species and platelet activation in reperfusion injury
.
Circulation
95
,
787
789
641
Kennedy
,
G.
,
Norris
,
G.
,
Spence
,
V.
,
McLaren
,
M.
and
Belch
,
J.J.
(
2006
)
Is chronic fatigue syndrome associated with platelet activation?
Blood Coagul. Fibrinolysis
17
,
89
92
642
Bester
,
J.
and
Pretorius
,
E.
(
2016
)
Effects of IL-1beta, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity
.
Sci. Rep.
6
,
32188
643
Clemetson
,
K.J.
,
Clemetson
,
J.M.
,
Proudfoot
,
A.E.
,
Power
,
C.A.
,
Baggiolini
,
M.
and
Wells
,
T.N.
(
2000
)
Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets
.
Blood
96
,
4046
4054
644
Hottz
,
E.D.
,
Bozza
,
F.A.
and
Bozza
,
P.T.
(
2018
)
Platelets in immune response to virus and immunopathology of viral infections
.
Front. Med. (Lausanne)
5
,
121
645
Mancuso
,
M.E.
and
Santagostino
,
E.
(
2017
)
Platelets: much more than bricks in a breached wall
.
Br. J. Haematol.
178
,
209
219
646
Nevzorova
,
T.A.
,
Mordakhanova
,
E.R.
,
Daminova
,
A.G.
,
Ponomareva
,
A.A.
,
Andrianova
,
I.A.
,
Le Minh
,
G.
et al. (
2019
)
Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death
.
Cell Death Discov.
5
,
106
647
Olumuyiwa-Akeredolu
,
O.O.
,
Page
,
M.J.
,
Soma
,
P.
and
Pretorius
,
E.
(
2019
)
Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis
.
Nat. Rev. Rheumatol.
15
,
237
248
648
Bonaventura
,
A.
,
Vecchie
,
A.
,
Dagna
,
L.
,
Martinod
,
K.
,
Dixon
,
D.L.
,
Van Tassell
,
B.W.
et al. (
2021
)
Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19
.
Nat. Rev. Immunol.
21
,
319
329
649
Bunch
,
C.M.
,
Moore
,
E.E.
,
Moore
,
H.B.
,
Neal
,
M.D.
,
Thomas
,
A.V.
,
Zackariya
,
N.
et al. (
2022
)
Immuno-thrombotic complications of COVID-19: implications for timing of surgery and anticoagulation
.
Front. Surg.
9
,
889999
650
Adams
,
B.
,
Nunes
,
J.M.
,
Page
,
M.J.
,
Roberts
,
T.
,
Carr
,
J.
,
Nell
,
T.A.
et al. (
2019
)
Parkinson's disease: a systemic inflammatory disease accompanied by bacterial inflammagens
.
Front. Aging Neurosci.
11
,
210
651
Page
,
M.J.
,
Bester
,
J.
and
Pretorius
,
E.
(
2018
)
The inflammatory effects of TNF-alpha and complement component 3 on coagulation
.
Sci. Rep.
8
,
1812
652
Page
,
M.J.
and
Pretorius
,
E.
(
2020
)
A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection
.
Semin. Thromb. Hemost.
46
,
302
319
653
Page
,
M.J.
and
Pretorius
,
E.
(
2022
)
Platelet behavior contributes to neuropathologies: a focus on Alzheimer's and Parkinson's disease
.
Semin. Thromb. Hemost.
48
,
382
404
654
Pretorius
,
E.
,
Oberholzer
,
H.M.
,
van der Spuy
,
W.J.
and
Meiring
,
J.H.
(
2009
)
Macrothrombocytopenia: investigating the ultrastructure of platelets and fibrin networks using scanning and transmission electron microscopy
.
Ultrastruct. Pathol.
33
,
216
221
655
Pretorius
,
E.
(
2019
)
Platelets as potent signaling entities in type 2 diabetes mellitus
.
Trends Endocrinol. Metab.
30
,
532
545
656
Pretorius
,
E.
(
2021
)
Platelets in HIV: a guardian of host defence or transient reservoir of the virus?
Front. Immunol.
12
,
649465
657
Soma
,
P.
,
Swanepoel
,
A.C.
,
du Plooy
,
J.N.
,
Mqoco
,
T.
and
Pretorius
,
E.
(
2016
)
Flow cytometric analysis of platelets type 2 diabetes mellitus reveals 'angry' platelets
.
Cardiovasc. Diabetol.
15
,
52
658
Soma
,
P.
and
Pretorius
,
E.
(
2015
)
Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus
.
Cardiovasc. Diabetol.
14
,
96
659
van Rooy
,
M.J.
and
Pretorius
,
E.
(
2015
)
Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke
.
Thromb. Res.
135
,
434
442
660
van Rooy
,
M.J.
,
Duim
,
W.
,
Ehlers
,
R.
,
Buys
,
A.V.
and
Pretorius
,
E.
(
2015
)
Platelet hyperactivity and fibrin clot structure in transient ischemic attack individuals in the presence of metabolic syndrome: a microscopy and thromboelastography study
.
Cardiovasc. Diabetol.
14
,
86
661
Blann
,
A.D.
,
Nadar
,
S.K.
and
Lip
,
G.Y.
(
2003
)
The adhesion molecule P-selectin and cardiovascular disease
.
Eur. Heart. J.
24
,
2166
2179
662
Perkins
,
L.A.
,
Anderson
,
C.J.
and
Novelli
,
E.M.
(
2019
)
Targeting P-selectin adhesion molecule in molecular imaging: P-selectin expression as a valuable imaging biomarker of inflammation in cardiovascular disease
.
J. Nucl. Med.
60
,
1691
1697
663
Tarasev
,
M.
,
Mota
,
S.
,
Gao
,
X.
,
Ferranti
,
M.
,
Zaidi
,
A.U.
,
Hannan
,
B.
et al. (
2022
)
Possible role of P-selectin adhesion in long-COVID: a comparative analysis of a long-COVID case versus an asymptomatic post-COVID case
.
medRxiv
2022.2003.2009.22271297
664
Lee
,
J.
,
Kang
,
Y.
,
Chang
,
J.
,
Song
,
J.
and
Kim
,
B.K.
(
2020
)
Determination of serotonin concentration in single human platelets through single-entity electrochemistry
.
ACS Sens.
5
,
1943
1948
665
Cloutier
,
N.
,
Allaeys
,
I.
,
Marcoux
,
G.
,
Machlus
,
K.R.
,
Mailhot
,
B.
,
Zufferey
,
A.
et al. (
2018
)
Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration
.
Proc. Natl Acad. Sci. U.S.A.
115
,
E1550
E1559
666
Dale
,
G.L.
,
Friese
,
P.
,
Batar
,
P.
,
Hamilton
,
S.F.
,
Reed
,
G.L.
,
Jackson
,
K.W.
et al. (
2002
)
Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface
.
Nature
415
,
175
179
667
Jalali
,
F.
,
Rezaie
,
S.
,
Rola
,
P.
and
Kyle-Sidell
,
C
. (
2021
)
COVID-19 Pathophysiology: Are Platelets and Serotonin hiding in plain sight? SSRN preprint, https://ssrn.com/abstract=3800402
668
Santos
,
A.P.
,
Couto
,
C.F.
,
Pereira
,
S.S.
and
Monteiro
,
M.P.
(
2022
)
Is serotonin the missing link between COVID-19 severity observed in patients with diabetes and obesity?
Neuroendocrinology
1
71
669
Zimering
,
M.B.
,
Razzaki
,
T.
,
Tsang
,
T.
and
Shin
,
J.J.
(
2020
)
Inverse association between serotonin 2A receptor antagonist medication use and mortality in severe COVID-19 infection
.
Endocrinol. Diabetes Metab. J.
4
,
1
5
670
Fert-Bober
,
J.
,
Darrah
,
E.
and
Andrade
,
F.
(
2020
)
Insights into the study and origin of the citrullinome in rheumatoid arthritis
.
Immunol. Rev.
294
,
133
147
671
Smatti
,
M.K.
,
Cyprian
,
F.S.
,
Nasrallah
,
G.K.
,
Al Thani
,
A.A.
,
Almishal
,
R.O.
and
Yassine
,
H.M.
(
2019
)
Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms
.
Viruses
11
,
762
672
Rojas
,
M.
,
Rodríguez
,
Y.
,
Acosta-Ampudia
,
Y.
,
Monsalve
,
D.M.
,
Zhu
,
C.
,
Quan-Zhen
,
L.
et al. (
2022
)
Autoimmunity is a hallmark of post-COVID syndrome
.
J. Transl. Med.
20
,
129
673
Winchester
,
N.
,
Calabrese
,
C.
and
Calabrese
,
L.H.
(
2021
)
The intersection of COVID-19 and autoimmunity: what is our current understanding?
Pathog. Immun.
6
,
31
54
674
Malik
,
H.I.
,
Mir
,
A.R.
,
Abidi
,
M.
,
Habib
,
S.
,
Khan
,
F.H.
and
Moinuddin
(
2020
)
Preferential recognition of epitopes on peroxynitrite-modified alpha-2-macroglobulin by circulating autoantibodies in rheumatoid arthritis patients
.
J. Biomol. Struct. Dyn.
38
,
1984
1994
675
Sotzny
,
F.
,
Blanco
,
J.
,
Capelli
,
E.
,
Castro-Marrero
,
J.
,
Steiner
,
S.
,
Murovska
,
M.
et al. (
2018
)
Myalgic encephalomyelitis/chronic fatigue syndrome - evidence for an autoimmune disease
.
Autoimmun. Rev.
17
,
601
609
676
Riemekasten
,
G.
,
Petersen
,
F.
and
Heidecke
,
H.
(
2020
)
What makes antibodies against G protein-coupled receptors so special? A novel concept to understand chronic diseases
.
Front. Immunol.
11
,
564526
677
Liu
,
Y.
,
Ebinger
,
J.E.
,
Mostafa
,
R.
,
Budde
,
P.
,
Gajewski
,
J.
,
Walker
,
B.
et al. (
2021
)
Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection
.
J. Transl. Med.
19
,
524
678
Charnley
,
M.
,
Islam
,
S.
,
Bindra
,
G.K.
,
Engwirda
,
J.
,
Ratcliffe
,
J.
,
Zhou
,
J.
et al. (
2022
)
Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19
.
Nat. Commun.
13
,
3387
679
Nyström
,
S.
and
Hammarström
,
P.
(
2022
)
Amyloidogenesis of SARS-CoV-2 spike protein
.
J. Am. Chem. Soc.
144
,
8945
8950
680
Natarajan
,
A.
,
Zlitni
,
S.
,
Brooks
,
E.F.
,
Vance
,
S.E.
,
Dahlen
,
A.
,
Hedlin
,
H.
et al. (
2022
)
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection
.
Med
3
,
371
387.e9
681
Jacobs
,
J.J.L.
(
2021
)
Persistent SARS-2 infections contribute to long COVID-19
.
Med. Hypotheses
149
,
110538
682
Swank
,
Z.
,
Senussi
,
Y.
,
Alter
,
G.
and
Walt
,
D.R.
(
2022
)
Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae
.
medRxiv
2022.2006.2014.22276401
683
Brogna
,
C.
,
Brogna
,
B.
,
Bisaccia
,
D.R.
,
Lauritano
,
F.
,
Marino
,
G.
,
Montano
,
L.
et al. (
2022
)
Could SARS-CoV-2 have bacteriophage behavior or induce the activity of other bacteriophages?
Vaccines (Basel)
10
,
708
684
Velasquez-Manoff
,
M.
(
2015
)
Gut microbiome: the peacekeepers
.
Nature
518
,
S3
11
685
Proal
,
A.D.
and
Marshall
,
T.G.
(
2018
)
Re-framing the theory of autoimmunity in the era of the microbiome: persistent pathogens, autoantibodies, and molecular mimicry
.
Discov. Med.
140
,
299
308
686
Kamada
,
N.
,
Seo
,
S.U.
,
Chen
,
G.Y.
and
Núñez
,
G.
(
2013
)
Role of the gut microbiota in immunity and inflammatory disease
.
Nat. Rev. Immunol.
13
,
321
335
687
Gentile
,
C.L.
and
Weir
,
T.L.
(
2018
)
The gut microbiota at the intersection of diet and human health
.
Science
362
,
776
780
688
Maier
,
L.
,
Goemans
,
C.V.
,
Wirbel
,
J.
,
Kuhn
,
M.
,
Eberl
,
C.
,
Pruteanu
,
M.
et al. (
2021
)
Unravelling the collateral damage of antibiotics on gut bacteria
.
Nature
599
,
120
124
689
Maier
,
L.
,
Pruteanu
,
M.
,
Kuhn
,
M.
,
Zeller
,
G.
,
Telzerow
,
A.
,
Anderson
,
E.E.
et al. (
2018
)
Extensive impact of non-antibiotic drugs on human gut bacteria
.
Nature
555
,
623
628
690
Vieira-Silva
,
S.
,
Falony
,
G.
,
Belda
,
E.
,
Nielsen
,
T.
,
Aron-Wisnewsky
,
J.
,
Chakaroun
,
R.
et al. (
2020
)
Statin therapy is associated with lower prevalence of gut microbiota dysbiosis
.
Nature
581
,
310
315
691
Forslund
,
S.K.
,
Chakaroun
,
R.
,
Zimmermann-Kogadeeva
,
M.
,
Markó
,
L.
,
Aron-Wisnewsky
,
J.
,
Nielsen
,
T.
et al. (
2021
)
Combinatorial, additive and dose-dependent drug-microbiome associations
.
Nature
600
,
500
505
692
Haran
,
J.P.
,
Bradley
,
E.
,
Zeamer
,
A.L.
,
Cincotta
,
L.
,
Salive
,
M.C.
,
Dutta
,
P.
et al. (
2021
)
Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID
.
JCI Insight
6
,
e152346
693
Yeoh
,
Y.K.
,
Zuo
,
T.
,
Lui
,
G.C.
,
Zhang
,
F.
,
Liu
,
Q.
,
Li
,
A.Y.
et al. (
2021
)
Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19
.
Gut
70
,
698
706
694
Hazan
,
S.
,
Stollman
,
N.
,
Bozkurt
,
H.S.
,
Dave
,
S.
,
Papoutsis
,
A.J.
,
Daniels
,
J.
et al. (
2022
)
Lost microbes of COVID-19: Bifidobacterium, Faecalibacterium depletion and decreased microbiome diversity associated with SARS-CoV-2 infection severity
.
BMJ Open Gastroenterol.
9
,
e000871
695
Liu
,
Q.
,
Mak
,
J.W.Y.
,
Su
,
Q.
,
Yeoh
,
Y.K.
,
Lui
,
G.C.
,
Ng
,
S.S.S.
et al. (
2022
)
Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome
.
Gut
71
,
544
552
696
Wang
,
B.
,
Zhang
,
L.
,
Wang
,
Y.
,
Dai
,
T.
,
Qin
,
Z.
,
Zhou
,
F.
et al. (
2022
)
Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions
.
Signal. Transduct. Target. Ther.
7
,
143
697
Hilpert
,
K.
and
Mikut
,
R.
(
2021
)
Is there a connection between Gut microbiome dysbiosis occurring in COVID-19 patients and post-COVID-19 symptoms?
Front. Microbiol.
12
,
732838
698
Newsome
,
R.C.
,
Gauthier
,
J.
,
Hernandez
,
M.C.
,
Abraham
,
G.E.
,
Robinson
,
T.O.
,
Williams
,
H.B.
et al. (
2021
)
The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort
.
Gut Microbes
13
,
1
15
699
Cifuentes-Muñoz
,
N.
,
Dutch
,
R.E.
and
Cattaneo
,
R.
(
2018
)
Direct cell-to-cell transmission of respiratory viruses: the fast lanes
.
PLoS Pathog.
14
,
e1007015
700
Bang
,
L.M.
and
Keating
,
G.M.
(
2004
)
Adalimumab: a review of its use in rheumatoid arthritis
.
BioDrugs
18
,
121
139
701
Chen
,
Y.F.
,
Jobanputra
,
P.
,
Barton
,
P.
,
Jowett
,
S.
,
Bryan
,
S.
,
Clark
,
W.
et al. (
2006
)
A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness
.
Health Technol. Assess.
10
,
iii–iv, xi–xiii
,
1
229
702
Cattaneo
,
M.
(
2015
)
P2y12 receptors: structure and function
.
J. Thromb. Haemost.
13
,
S10
S16
703
Eller
,
T.
,
Busse
,
J.
,
Dittrich
,
M.
,
Flieder
,
T.
,
Alban
,
S.
,
Knabbe
,
C.
et al. (
2014
)
Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests
.
Clin. Chem. Lab. Med.
52
,
835
844
704
Scharf
,
R.E.
(
2012
)
Drugs that affect platelet function
.
Semin. Thromb. Hemost.
38
,
865
883
705
Richman
,
S.
,
Morris
,
M.C.
,
Broderick
,
G.
,
Craddock
,
T.J.A.
,
Klimas
,
N.G.
and
Fletcher
,
M.A.
(
2019
)
Pharmaceutical interventions in chronic fatigue syndrome: a literature-based commentary
.
Clin. Ther.
41
,
798
805
706
Collatz
,
A.
,
Johnston
,
S.C.
,
Staines
,
D.R.
and
Marshall-Gradisnik
,
S.M.
(
2016
)
A systematic review of drug therapies for chronic fatigue syndrome/myalgic encephalomyelitis
.
Clin. Ther.
38
,
1263
1271.e1269
707
Reis
,
G.
,
Silva
,
E.
,
Silva
,
D.C.M.
,
Thabane
,
L.
,
Milagres
,
A.C.
,
Ferreira
,
T.S.
et al. (
2022
)
Effect of Early treatment with ivermectin among patients with COVID-19
.
N. Engl. J. Med
.
386
,
1721
1731
708
Bhakuni
,
T.
,
Ali
,
M.F.
,
Ahmad
,
I.
,
Bano
,
S.
,
Ansari
,
S.
and
Jairajpuri
,
M.A.
(
2016
)
Role of heparin and non heparin binding serpins in coagulation and angiogenesis: a complex interplay
.
Arch. Biochem. Biophys.
604
,
128
142
709
Hirsh
,
J.
and
Raschke
,
R.
(
2004
)
Heparin and low-molecular-weight heparin: the seventh ACCP conference on antithrombotic and thrombolytic therapy
.
Chest
126
,
188S
203S
710
Rezaie
,
A.R.
and
Giri
,
H.
(
2020
)
Anticoagulant and signaling functions of antithrombin
.
J. Thromb. Haemost.
18
,
3142
3153
711
Zhang
,
Y.
,
Zhang
,
M.
,
Tan
,
L.
,
Pan
,
N.
and
Zhang
,
L.
(
2019
)
The clinical use of fondaparinux: a synthetic heparin pentasaccharide
.
Prog. Mol. Biol. Transl. Sci.
163
,
41
53
712
Marongiu
,
F.
and
Barcellona
,
D.
(
2020
)
Fondaparinux: should it be studied in patients with COVID-19 disease?
TH Open
4
,
e300
e302
713
Pawlowski
,
C.
,
Venkatakrishnan
,
A.J.
,
Kirkup
,
C.
,
Berner
,
G.
,
Puranik
,
A.
,
O'Horo
,
J.C.
et al. (
2021
)
Enoxaparin is associated with lower rates of mortality than unfractionated heparin in hospitalized COVID-19 patients
.
EClinicalMedicine
33
,
100774
714
Mycroft-West
,
C.
,
Su
,
D.
,
Elli
,
S.
,
Li
,
Y.
,
Guimond
,
S.
,
Miller
,
G.
et al. (
2020
)
The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding
.
bioRxiv
2020.2002.2029.971093
715
Tree
,
J.A.
,
Turnbull
,
J.E.
,
Buttigieg
,
K.R.
,
Elmore
,
M.J.
,
Coombes
,
N.
,
Hogwood
,
J.
et al. (
2021
)
Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations
.
Br. J. Pharmacol.
178
,
626
635
716
Handy
,
A.
,
Banerjee
,
A.
,
Wood
,
A.M.
,
Dale
,
C.
,
Sudlow
,
C.L.M.
,
Tomlinson
,
C.
et al. (
2022
)
Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort
.
Heart
108
,
923
931
717
Viecca
,
M.
,
Radovanovic
,
D.
,
Forleo
,
G.B.
and
Santus
,
P.
(
2020
)
Enhanced platelet inhibition treatment improves hypoxemia in patients with severe COVID-19 and hypercoagulability. A case control, proof of concept study
.
Pharmacol. Res.
158
,
104950
718
Spaetgens
,
B.
,
Nagy
,
M.
and
Ten Cate
,
H.
(
2022
)
Antiplatelet therapy in patients with COVID-19-more is less?
J. Am. Med. Assoc.
327
,
223
224
719
Berger
,
J.S.
,
Kornblith
,
L.Z.
,
Gong
,
M.N.
,
Reynolds
,
H.R.
,
Cushman
,
M.
,
Cheng
,
Y.
et al. (
2022
)
Effect of P2Y12 inhibitors on survival free of organ support among non-critically Ill hospitalized patients with COVID-19: a randomized clinical trial
.
J. Am. Med. Assoc
327
,
227
236
720
Zhao
,
S.
,
Chadwick
,
L.
,
Mysler
,
E.
and
Moots
,
R.J.
(
2018
)
Review of biosimilar trials and data on Adalimumab in rheumatoid arthritis
.
Curr. Rheumatol. Rep.
20
,
57
721
Huizinga
,
T.W.J.
,
Torii
,
Y.
and
Muniz
,
R.
(
2021
)
Adalimumab biosimilars in the treatment of rheumatoid arthritis: a systematic review of the evidence for biosimilarity
.
Rheumatol. Ther.
8
,
41
61
722
Lu
,
X.
,
Hu
,
R.
,
Peng
,
L.
,
Liu
,
M.
and
Sun
,
Z.
(
2021
)
Efficacy and safety of Adalimumab biosimilars: current critical clinical data in rheumatoid arthritis
.
Front. Immunol.
12
,
638444
723
Stevenson
,
M.
,
Archer
,
R.
,
Tosh
,
J.
,
Simpson
,
E.
,
Everson-Hock
,
E.
,
Stevens
,
J.
et al. (
2016
)
Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and Abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation
.
Health Technol. Assess
.
20
,
1
610
724
Guo
,
Y.
,
Hu
,
K.
,
Li
,
Y.
,
Lu
,
C.
,
Ling
,
K.
,
Cai
,
C.
et al. (
2022
)
Targeting TNF-alpha for COVID-19: recent advanced and controversies
.
Front. Public Health
10
,
833967
725
Robinson
,
P.C.
,
Liew
,
D.F.L.
,
Tanner
,
H.L.
,
Grainger
,
J.R.
,
Dwek
,
R.A.
,
Reisler
,
R.B.
et al. (
2022
)
COVID-19 therapeutics: challenges and directions for the future
.
Proc. Natl Acad. Sci. U.S.A.
119
,
e2119893119
726
van de Veerdonk
,
F.L.
,
Giamarellos-Bourboulis
,
E.
,
Pickkers
,
P.
,
Derde
,
L.
,
Leavis
,
H.
,
van Crevel
,
R.
et al. (
2022
)
A guide to immunotherapy for COVID-19
.
Nat. Med.
28
,
39
50
727
Littlefield
,
K.M.
,
Watson
,
R.O.
,
Schneider
,
J.M.
,
Neff
,
C.P.
,
Yamada
,
E.
,
Zhang
,
M.
et al. (
2022
)
SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2
.
PLoS Pathog.
18
,
e1010359
728
Ledford
,
H.
(
2022
)
Can drugs reduce the risk of long COVID? What scientists know so far
.
Nature
604
,
20
21
729
Castro-Marrero
,
J.
,
Sáez-Francàs
,
N.
,
Santillo
,
D.
and
Alegre
,
J.
(
2017
)
Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: all roads lead to Rome
.
Br. J. Pharmacol.
174
,
345
369
730
VanElzakker
,
M.B.
,
Brumfield
,
S.A.
and
Lara Mejia
,
P.S.
(
2018
)
Neuroinflammation and cytokines in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a critical review of research methods
.
Front. Neurol.
9
,
1033
731
Morris
,
M.C.
,
Cooney
,
K.E.
,
Sedghamiz
,
H.
,
Abreu
,
M.
,
Collado
,
F.
,
Balbin
,
E.G.
et al. (
2019
)
Leveraging prior knowledge of endocrine immune regulation in the therapeutically relevant phenotyping of women with chronic fatigue syndrome
.
Clin. Ther.
41
,
656
674.e654
732
Yang
,
T.
,
Yang
,
Y.
,
Wang
,
D.
,
Li
,
C.
,
Qu
,
Y.
,
Guo
,
J.
et al. (
2019
)
The clinical value of cytokines in chronic fatigue syndrome
.
J. Transl. Med.
17
,
213
733
Druce
,
K.L.
,
Jones
,
G.T.
,
Macfarlane
,
G.J.
and
Basu
,
N.
(
2015
)
Patients receiving anti-TNF therapies experience clinically important improvements in RA-related fatigue: results from the British society for rheumatology biologics register for rheumatoid arthritis
.
Rheumatology (Oxford)
54
,
964
971
734
Lopes
,
M.I.
,
Bonjorno
,
L.P.
,
Giannini
,
M.C.
,
Amaral
,
N.B.
,
Menezes
,
P.I.
,
Dib
,
S.M.
et al. (
2021
)
Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial
.
RMD Open
7
,
e001455
735
Arbab
,
A.A.I.
,
Lu
,
X.
,
Abdalla
,
I.M.
,
Idris
,
A.A.
,
Chen
,
Z.
,
Li
,
M.
et al. (
2021
)
Metformin inhibits lipoteichoic acid-induced oxidative stress and inflammation through AMPK/NRF2/NF-kappaB signaling pathway in bovine mammary epithelial cells
.
Front. Vet. Sci.
8
,
661380
736
Kamyshnyi
,
O.
,
Matskevych
,
V.
,
Lenchuk
,
T.
,
Strilbytska
,
O.
,
Storey
,
K.
and
Lushchak
,
O.
(
2021
)
Metformin to decrease COVID-19 severity and mortality: molecular mechanisms and therapeutic potential
.
Biomed. Pharmacother.
144
,
112230
737
Li
,
Y.
,
Yang
,
X.
,
Yan
,
P.
,
Sun
,
T.
,
Zeng
,
Z.
and
Li
,
S.
(
2021
)
Metformin in patients with COVID-19: a systematic review and meta-Analysis
.
Front. Med. (Lausanne)
8
,
704666
738
Bukhari
,
I.A.
,
Almotrefi
,
A.A.
,
Mohamed
,
O.Y.
,
Al-Masri
,
A.A.
and
Sheikh
,
S.A.
(
2018
)
Protective effect of fenofibrate against ischemia-/reperfusion-induced cardiac arrhythmias in isolated rat hearts
.
Fundam. Clin. Pharmacol.
32
,
141
146
739
Zhu
,
Q.
,
He
,
G.
,
Wang
,
J.
,
Wang
,
Y.
and
Chen
,
W.
(
2016
)
Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice
.
Sci. Rep.
6
,
22044
740
Bolton
,
M.J.
,
Chapman
,
B.P.
and
Van Marwijk
,
H.
(
2020
)
Low-dose naltrexone as a treatment for chronic fatigue syndrome
.
BMJ Case Rep.
13
,
e232502
741
Cabanas
,
H.
,
Muraki
,
K.
,
Eaton-Fitch
,
N.
,
Staines
,
D.R.
and
Marshall-Gradisnik
,
S.
(
2021
)
Potential therapeutic benefit of low dose naltrexone in myalgic encephalomyelitis/chronic fatigue syndrome: role of transient receptor potential melastatin 3 ion channels in pathophysiology and treatment
.
Front. Immunol.
12
,
687806
742
Kim
,
P.S.
and
Fishman
,
M.A.
(
2020
)
Low-dose naltrexone for chronic pain: update and systemic review
.
Curr. Pain Headache Rep.
24
,
64
743
Xu
,
F.
,
Hou
,
T.
,
Shen
,
A.
,
Jin
,
H.
,
Xiao
,
Y.
,
Yu
,
W.
et al. (
2021
)
Mechanism deconvolution of Qing Fei Pai Du decoction for treatment of coronavirus disease 2019 (COVID-19) by label-free integrative pharmacology assays
.
J. Ethnopharmacol.
280
,
114488
744
Li
,
Y.
,
Li
,
B.
,
Wang
,
P.
and
Wang
,
Q.
(
2021
)
Traditional Chinese medicine, Qingfei Paidu decoction and Xuanfei Baidu decoction, inhibited cytokine production via NF-kappaB signaling pathway in macrophages: implications for coronavirus disease 2019 (COVID-19) therapy
.
Front. Pharmacol.
12
,
722126
745
Li
,
Z.Y.
,
Xie
,
Z.J.
,
Li
,
H.C.
,
Wang
,
J.J.
,
Wen
,
X.H.
,
Wu
,
S.Y.
et al. (
2021
)
Guidelines on the treatment with integrated traditional Chinese medicine and western medicine for severe coronavirus disease 2019
.
Pharmacol. Res.
174
,
105955
746
Zhang
,
L.H.
,
Zheng
,
X.
,
Bai
,
X.K.
,
Wang
,
Q.
,
Chen
,
B.W.
,
Wang
,
H.B.
et al. (
2021
)
Association between use of Qingfei Paidu Tang and mortality in hospitalized patients with COVID-19: a national retrospective registry study
.
Phytomedicine
85
,
153531
747
Wang
,
H.
,
Xu
,
B.
,
Zhang
,
Y.
,
Duan
,
Y.
,
Gao
,
R.
,
He
,
H.
et al. (
2021
)
Efficacy and safety of traditional Chinese medicine in coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis
.
Front. Pharmacol.
12
,
609213
748
Liu
,
J.
,
Dong
,
F.
and
Robinson
,
N.
(
2022
)
State-of-the-art evidence of traditional Chinese medicine for treating coronavirus disease 2019
.
J. Tradit. Chin. Med. Sci.
9
,
2
6
749
Wang
,
J.B.
,
Andrade-Cetto
,
A.
,
Echeverria
,
J.
,
Wardle
,
J.
,
Yen
,
H.R.
and
Heinrich
,
M.
(
2021
)
Editorial: ethnopharmacological responses to the coronavirus disease 2019 pandemic
.
Front. Pharmacol.
12
,
798674
750
Pang
,
W.
,
Yang
,
F.
,
Zhao
,
Y.
,
Dai
,
E.
,
Feng
,
J.
,
Huang
,
Y.
et al. (
2022
)
Qingjin Yiqi granules for post-COVID-19 condition: a randomized clinical trial
.
J. Evid. Based Med.
15
,
30
38
751
Derosa
,
G.
,
Maffioli
,
P.
,
D'Angelo
,
A.
and
Di Pierro
,
F.
(
2021
)
Nutraceutical approach to preventing coronavirus disease 2019 and related complications
.
Front. Immunol.
12
,
582556
752
Alesci
,
A.
,
Aragona
,
M.
,
Cicero
,
N.
and
Lauriano
,
E.R.
(
2021
)
Can nutraceuticals assist treatment and improve COVID-19 symptoms?
Nat. Prod. Res.
1
20
36
,
2672
2691
753
Savant
,
S.
,
Srinivasan
,
S.
and
Kruthiventi
,
A.K.
(
2021
)
Potential nutraceuticals for COVID-19
.
Nutr. Dietary Suppl.
13
,
25
51
754
Williams
,
R.J.
(
1956
)
Biochemical Individuality
,
John Wiley
,
New York
755
Cuzzocrea
,
S.
,
Riley
,
D.P.
,
Caputi
,
A.P.
and
Salvemini
,
D.
(
2001
)
Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury
.
Pharmacol. Rev.
53
,
135
159
756
Zhao
,
K.
,
Zhao
,
G.M.
,
Wu
,
D.
,
Soong
,
Y.
,
Birk
,
A.V.
,
Schiller
,
P.W.
et al. (
2004
)
Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury
.
J. Biol. Chem.
279
,
34682
34690
757
Mori
,
K.
,
Lee
,
H.T.
,
Rapoport
,
D.
,
Drexler
,
I.R.
,
Foster
,
K.
,
Yang
,
J.
et al. (
2005
)
Endocytic delivery of lipoccalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury
.
J. Clin. Investig.
115
,
610
621
758
Kelsey
,
N.A.
,
Wilkins
,
H.M.
and
Linseman
,
D.A.
(
2010
)
Nutraceutical antioxidants as novel neuroprotective agents
.
Molecules
15
,
7792
7814
759
Tardiolo
,
G.
,
Bramanti
,
P.
and
Mazzon
,
E.
(
2018
)
Overview on the effects of N-acetylcysteine in neurodegenerative diseases
.
Molecules
23
,
3305
760
dos Santos Tenório
,
M.C.
,
Graciliano
,
N.G.
,
Moura
,
F.A.
,
de Oliveira
,
M.
and
Goulart
,
M.O.F.
(
2021
)
N-acetylcysteine (NAC): impacts on human health
.
Antioxidants (Basel)
10
,
967
761
Schwalfenberg
,
G.K.
(
2021
)
N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks)
.
J. Nutr. Metab.
2021
,
9949453
762
Ye
,
M.
,
Lin
,
W.
,
Zheng
,
J.
and
Lin
,
S.
(
2021
)
N-acetylcysteine for chronic kidney disease: a systematic review and meta-analysis
.
Am. J. Transl. Res.
13
,
2472
2485
763
Batooei
,
M.
,
Tahamoli-Roudsari
,
A.
,
Basiri
,
Z.
,
Yasrebifar
,
F.
,
Shahdoust
,
M.
,
Eshraghi
,
A.
et al. (
2018
)
Evaluating the effect of oral N-acetylcysteine as an adjuvant treatment on clinical outcomes of patients with rheumatoid arthritis: a randomized, double blind clinical trial
.
Rev. Recent Clin. Trials
13
,
132
138
764
Kim
,
H.R.
,
Kim
,
K.W.
,
Kim
,
B.M.
,
Lee
,
K.A.
and
Lee
,
S.H.
(
2019
)
N-acetyl-l-cysteine controls osteoclastogenesis through regulating Th17 differentiation and RANKL production in rheumatoid arthritis
.
Korean J. Intern. Med.
34
,
210
219
765
Jamali
,
F.
,
Ahmadzadeh
,
A.
,
Sahraei
,
Z.
and
Salamzadeh
,
J.
(
2021
)
Study of the effects of N-acetylcysteine on inflammatory biomarkers and disease activity score in patients with rheumatoid arthritis
.
Iran. J. Allergy Asthma Immunol.
20
,
574
583
766
Finsterer
,
J.
,
Scorza
,
F.A.
,
Scorza
,
C.A.
and
Fiorini
,
A.C.
(
2022
)
Repurposing the antioxidant and anti-inflammatory agent N-acetyl cysteine for treating COVID-19
.
World J. Virol.
11
,
82
84
767
Assimakopoulos
,
S.F.
,
Aretha
,
D.
,
Komninos
,
D.
,
Dimitropoulou
,
D.
,
Lagadinou
,
M.
,
Leonidou
,
L.
et al. (
2021
)
N-acetyl-cysteine reduces the risk for mechanical ventilation and mortality in patients with COVID-19 pneumonia: a two-center retrospective cohort study
.
Infect. Dis. (Lond.)
53
,
847
854
768
Mohanty
,
R.R.
,
Padhy
,
B.M.
,
Das
,
S.
and
Meher
,
B.R.
(
2021
)
Therapeutic potential of N-acetyl cysteine (NAC) in preventing cytokine storm in COVID-19: review of current evidence
.
Eur. Rev. Med. Pharmacol. Sci.
25
,
2802
2807
769
Reyes-Gordillo
,
K.
,
Segovia
,
J.
,
Shibayama
,
M.
,
Vergara
,
P.
,
Moreno
,
M.G.
and
Muriel
,
P.
(
2007
)
Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress
.
Biochim. Biophys. Acta
1770
,
989
996
770
Fu
,
Y.
,
Zheng
,
S.
,
Lin
,
J.
,
Ryerse
,
J.
and
Chen
,
A.
(
2008
)
Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation
.
Mol. Pharmacol.
73
,
399
409
771
Han
,
J.
,
Pan
,
X.Y.
,
Xu
,
Y.
,
Xiao
,
Y.
,
An
,
Y.
,
Tie
,
L.
et al. (
2012
)
Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage
.
Autophagy
8
,
812
825
772
Varatharajalu
,
R.
,
Garige
,
M.
,
Leckey
,
L.C.
,
Reyes-Gordillo
,
K.
,
Shah
,
R.
and
Lakshman
,
M.R.
(
2016
)
Protective role of dietary curcumin in the prevention of the oxidative stress induced by chronic alcohol with respect to hepatic injury and antiatherogenic markers
.
Oxidative Med. Cell. Longev.
2016
,
5017460
773
Liu
,
Z.
and
Ying
,
Y.
(
2020
)
The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia
.
Front Cell Dev. Biol.
8
,
479
774
Rattis
,
B.A.C.
,
Ramos
,
S.G.
and
Celes
,
M.R.N.
(
2021
)
Curcumin as a potential treatment for COVID-19
.
Front. Pharmacol.
12
,
675287
775
Morris
,
G.
,
Puri
,
B.K.
,
Walker
,
A.J.
,
Maes
,
M.
,
Carvalho
,
A.F.
,
Walder
,
K.
et al. (
2019
)
Myalgic encephalomyelitis/chronic fatigue syndrome: from pathophysiological insights to novel therapeutic opportunities
.
Pharmacol. Res.
148
,
104450
776
Ahmed
,
S.
,
Anuntiyo
,
J.
,
Malemud
,
C.J.
and
Haqqi
,
T.M.
(
2005
)
Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review
.
Evid. Based Complement. Alternat. Med.
2
,
301
308
777
Aravilli
,
R.K.
,
Vikram
,
S.L.
and
Kohila
,
V.
(
2017
)
Phytochemicals as potential antidotes for targeting NF-kappa B in rheumatoid arthritis
.
3 Biotech
7
,
253
778
Behl
,
T.
,
Mehta
,
K.
,
Sehgal
,
A.
,
Singh
,
S.
,
Sharma
,
N.
,
Ahmadi
,
A.
et al. (
2022
)
Exploring the role of polyphenols in rheumatoid arthritis
.
Crit Rev Food Sci Nutr.
62
,
5372
5393
779
Mohammadian Haftcheshmeh
,
S.
,
Khosrojerdi
,
A.
,
Aliabadi
,
A.
,
Lotfi
,
S.
,
Mohammadi
,
A.
and
Momtazi-Borojeni
,
A.A.
(
2021
)
Immunomodulatory effects of curcumin in rheumatoid arthritis: evidence from molecular mechanisms to clinical outcomes
.
Rev. Physiol. Biochem. Pharmacol.
179
,
1
29
780
Pourhabibi-Zarandi
,
F.
,
Shojaei-Zarghani
,
S.
and
Rafraf
,
M.
(
2021
)
Curcumin and rheumatoid arthritis: a systematic review of literature
.
Int. J. Clin. Pract.
75
,
e14280
781
Jena
,
A.B.
,
Kanungo
,
N.
,
Nayak
,
V.
,
Chainy
,
G.B.N.
and
Dandapat
,
J.
(
2021
)
Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies
.
Sci. Rep.
11
,
2043
782
Vahedian-Azimi
,
A.
,
Abbasifard
,
M.
,
Rahimi-Bashar
,
F.
,
Guest
,
P.C.
,
Majeed
,
M.
,
Mohammadi
,
A.
et al. (
2022
)
Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials
.
Nutrients
14
,
256
783
Bousquet
,
J.
,
Haahtela
,
T.
,
Blain
,
H.
,
Czarlewski
,
W.
,
Zuberbier
,
T.
,
Bedbrook
,
A.
et al. (
2022
)
Available and affordable complementary treatments for COVID-19: from hypothesis to pilot studies and the need for implementation
.
Clin. Transl. Allergy
12
,
e12127
784
Srivastava
,
K.C.
,
Bordia
,
A.
and
Verma
,
S.K.
(
1995
)
Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets
.
Prostaglandins Leukot. Essent. Fat. Acids
52
,
223
227
785
Shah
,
B.H.
,
Nawaz
,
Z.
,
Pertani
,
S.A.
,
Roomi
,
A.
,
Mahmood
,
H.
,
Saeed
,
S.A.
et al. (
1999
)
Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling
.
Biochem. Pharmacol.
58
,
1167
1172
786
Kim
,
K.
and
Park
,
K.I.
(
2019
)
A review of antiplatelet activity of traditional medicinal herbs on integrative medicine studies
.
Evid. Based Complement. Alternat. Med.
2019
,
7125162
787
Borodina
,
I.
,
Kenny
,
L.C.
,
McCarthy
,
C.M.
,
Paramasivan
,
K.
,
Pretorius
,
R.
,
Roberts
,
T.J.
et al. (
2020
)
The biology of ergothioneine, an antioxidant nutraceutical
.
Nutr. Res. Rev.
33
,
190
217
788
Cheah
,
I.K.
and
Halliwell
,
B.
(
2021
)
Ergothioneine, recent developments
.
Redox Biol.
42
,
101868
789
Halliwell
,
B.
,
Cheah
,
I.K.
and
Drum
,
C.L.
(
2016
)
Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis
.
Biochem. Biophys. Res. Commun.
470
,
245
250
790
Halliwell
,
B.
,
Cheah
,
I.K.
and
Tang
,
R.M.Y.
(
2018
)
Ergothioneine - a diet-derived antioxidant with therapeutic potential
.
FEBS Lett.
592
,
3357
3366
791
Paul
,
B.D.
and
Snyder
,
S.H.
(
2010
)
The unusual amino acid L-ergothioneine is a physiologic cytoprotectant
.
Cell Death Differ.
17
,
1134
1140
792
Paul
,
B.D.
(
2021
)
Ergothioneine: a stress vitamin with anti-aging, vascular and neuroprotective roles?
Antioxid. Redox Signal.
36
,
1306
1317
793
Servillo
,
L.
,
D'Onofrio
,
N.
and
Balestrieri
,
M.L.
(
2017
)
Ergothioneine antioxidant function: from chemistry to cardiovascular therapeutic potential
.
J. Cardiovasc. Pharmacol.
69
,
183
191
794
Fu
,
T.T.
and
Shen
,
L.
(
2022
)
Ergothioneine as a natural antioxidant against oxidative stress-related diseases
.
Front. Pharmacol.
13
,
850813
795
Gründemann
,
D.
,
Harlfinger
,
S.
,
Golz
,
S.
,
Geerts
,
A.
,
Lazar
,
A.
,
Berkels
,
R.
et al. (
2005
)
Discovery of the ergothioneine transporter
.
Proc Natl Acad Sci. USA
102
,
5256
5261
796
Gründemann
,
D.
(
2012
)
The ergothioneine transporter controls and indicates ergothioneine activity--a review
.
Prev. Med.
54
,
S71
S74
797
Gründemann
,
D.
,
Hartmann
,
L.
and
Flögel
,
S.
(
2021
)
The ergothioneine transporter (ETT): substrates and locations, an inventory
.
FEBS Lett.
596
,
1252
1269
798
Kerley
,
R.N.
,
McCarthy
,
C.
,
Kell
,
D.B.
and
Kenny
,
L.C.
(
2018
)
The potential therapeutic effects of ergothioneine in pre-eclampsia
.
Free Radic. Biol. Med.
117
,
145
157
799
Williamson
,
R.D.
,
McCarthy
,
F.P.
,
Manna
,
S.
,
Groarke
,
E.
,
Kell
,
D.B.
,
Kenny
,
L.C.
et al. (
2020
)
L-(+)-Ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model
.
Hypertension
75
,
561
568
800
Smith
,
E.
,
Ottosson
,
F.
,
Hellstrand
,
S.
,
Ericson
,
U.
,
Orho-Melander
,
M.
,
Fernandez
,
C.
et al. (
2020
)
Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease
.
Heart
106
,
691
697
801
Bedirli
,
A.
,
Sakrak
,
O.
,
Muhtaroglu
,
S.
,
Soyuer
,
I.
,
Guler
,
I.
,
Erdogan
,
A.R.
et al. (
2004
)
Ergothioneine pretreatment protects the liver from ischemia-reperfusion injury caused by increasing hepatic heat shock protein 70
.
J. Surg. Res.
122
,
96
102
802
Deiana
,
M.
,
Rosa
,
A.
,
Casu
,
V.
,
Piga
,
R.
,
Dessi
,
M.A.
and
Aruoma
,
O.I.
(
2004
)
L-Ergothioneine modulates oxidative damage in the kidney and liver of rats in vivo: studies upon the profile of polyunsaturated fatty acids
.
Clin. Nutr.
23
,
183
193
803
Song
,
T.Y.
,
Chen
,
C.L.
,
Liao
,
J.W.
,
Ou
,
H.C.
and
Tsai
,
M.S.
(
2010
)
Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo
.
Food Chem. Toxicol.
48
,
3492
3499
804
Yang
,
N.C.
,
Lin
,
H.C.
,
Wu
,
J.H.
,
Ou
,
H.C.
,
Chai
,
Y.C.
,
Tseng
,
C.Y.
et al. (
2012
)
Ergothioneine protects against neuronal injury induced by beta-amyloid in mice
.
Food Chem. Toxicol.
50
,
3902
3911
805
Sakrak
,
O.
,
Kerem
,
M.
,
Bedirli
,
A.
,
Pasaoglu
,
H.
,
Akyurek
,
N.
,
Ofluoglu
,
E.
et al. (
2008
)
Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteric ischemia and reperfusion injury
.
J. Surg. Res.
144
,
36
42
806
Cheah
,
I.K.
and
Halliwell
,
B.
(
2020
)
Could ergothioneine aid in the treatment of coronavirus patients?
Antioxidants (Basel)
9
,
595
807
Tang
,
R.M.Y.
,
Cheah
,
I.K.
,
Yew
,
T.S.K.
and
Halliwell
,
B.
(
2018
)
Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues
.
Sci. Rep.
8
,
1601
808
van der Hoek
,
S.A.
,
Darbani
,
B.
,
Zugaj
,
K.
,
Prabhala
,
B.K.
,
Biron
,
M.B.
,
Randelovic
,
M.
et al. (
2019
)
Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-ergothioneine
.
Front. Bioeng. Biotechnol.
7
,
262
809
van der Hoek
,
S.A.
,
Rusnák
,
M.
,
Jacobsen
,
I.H.
,
Martínez
,
J.L.
,
Kell
,
D.B.
and
Borodina
,
I.
(
2022
)
Engineering ergothioneine production in Yarrowia lipolytica FEBS lett
596
,
1356
1364
810
van der Hoek
,
S.A.
,
Rusnák
,
M.
,
Wang
,
G.
,
Stanchev
,
L.D.
,
de Fátima Alvez
,
L.
,
Jessop-Fabre
,
M.M.
et al. (
2022
)
Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae
.
Metab. Eng.
70
,
129
142
811
Alamgir
,
K.M.
,
Masuda
,
S.
,
Fujitani
,
Y.
,
Fukuda
,
F.
and
Tani
,
A.
(
2015
)
Production of ergothioneine by Methylobacterium species
.
Front. Microbiol.
6
,
1185
812
Fujitani
,
Y.
,
Alamgir
,
K.M.
and
Tani
,
A.
(
2018
)
Ergothioneine production using Methylobacterium species, yeast, and fungi
.
J. Biosci. Bioeng.
126
,
715
722
813
Han
,
Y.
,
Tang
,
X.
,
Zhang
,
Y.
,
Hu
,
X.
and
Ren
,
L.J.
(
2021
)
The current status of biotechnological production and the application of a novel antioxidant ergothioneine
.
Crit. Rev. Biotechnol.
41
,
580
593
814
Kamide
,
T.
,
Takusagawa
,
S.
,
Tanaka
,
N.
,
Ogasawara
,
Y.
,
Kawano
,
Y.
,
Ohtsu
,
I.
et al. (
2020
)
High production of ergothioneine in Escherichia coli using the sulfoxide synthase from Methylobacterium strains
.
J. Agric. Food Chem.
68
,
6390
6394
815
Osawa
,
R.
,
Kamide
,
T.
,
Satoh
,
Y.
,
Kawano
,
Y.
,
Ohtsu
,
I.
and
Dairi
,
T.
(
2018
)
Heterologous and high production of ergothioneine in Escherichia coli
.
J. Agric. Food Chem.
66
,
1191
1196
816
Takusagawa
,
S.
,
Satoh
,
Y.
,
Ohtsu
,
I.
and
Dairi
,
T.
(
2019
)
Ergothioneine production with Aspergillus oryzae
.
Biosci. Biotechnol. Biochem.
83
,
181
184
817
Wang
,
L.
,
Wang
,
Y.
,
Li
,
J.
,
Du
,
G.
and
Kang
,
Z.
(
2022
)
[Construction and optimization of ergothioneine-producing Escherichia coli]
.
Sheng Wu Gong Cheng Xue Bao.
38
,
796
806
818
Dubost
,
N.J.
,
Ou
,
B.
and
Beelman
,
R.B.
(
2007
)
Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity
.
Food Chem.
105
,
727
735
819
Ey
,
J.
,
Schömig
,
E.
and
Taubert
,
D.
(
2007
)
Dietary sources and antioxidant effects of ergothioneine
.
J. Agric. Food Chem.
55
,
6466
6474
820
Kalaras
,
M.D.
,
Richie
,
J.P.
,
Calcagnotto
,
A.
and
Beelman
,
R.B.
(
2017
)
Mushrooms: a rich source of the antioxidants ergothioneine and glutathione
.
Food Chem.
233
,
429
433
821
Feng
,
L.
,
Cheah
,
I.K.
,
Ng
,
M.M.
,
Li
,
J.
,
Chan
,
S.M.
,
Lim
,
S.L.
et al. (
2019
)
The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in Singapore
.
J. Alzheimers Dis.
68
,
197
203
822
Slomski
,
A.
(
2021
)
Trials test mushrooms and herbs as anti-COVID-19 agents
.
J. Am. Med. Assoc
326
,
1997
1999
823
Phillips
,
J.M.
,
Ooi
,
S.L.
and
Pak
,
S.C.
(
2022
)
Health-promoting properties of medicinal mushrooms and their bioactive compounds for the COVID-19 era-an appraisal: do the pro-health claims measure up?
Molecules
27
,
2302
824
Hussain
,
T.
,
Tan
,
B.
,
Yin
,
Y.L.
,
Blachier
,
F.
,
Tossou
,
M.C.B.
and
Rahu
,
N.
(
2016
)
Oxidative stress and inflammation: what polyphenols can do for US?
Oxidative Med. Cell. Longev.
2016
,
7432797
825
Middleton
,
E.
,
Kandaswami
,
C.
and
Theoharides
,
T.C.
(
2000
)
The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer
.
Pharmacol. Rev.
52
,
673
751
826
Havsteen
,
B.H.
(
2002
)
The biochemistry and medical significance of the flavonoids
.
Pharmacol. Ther.
96
,
67
202
827
Passamonti
,
S.
,
Terdoslavich
,
M.
,
Franca
,
R.
,
Vanzo
,
A.
,
Tramer
,
F.
,
Braidot
,
E.
et al. (
2009
)
Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms
.
Curr. Drug Metab.
10
,
369
394
828
Del Bo'
,
C.
,
Bernardi
,
S.
,
Marino
,
M.
,
Porrini
,
M.
,
Tucci
,
M.
,
Guglielmetti
,
S.
et al. (
2019
)
Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern?
Nutrients
11
,
1355
829
Bayat
,
P.
,
Farshchi
,
M.
,
Yousefian
,
M.
,
Mahmoudi
,
M.
and
Yazdian-Robati
,
R.
(
2021
)
Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: a systematic review of preclinical evidence
.
Int. Immunopharmacol.
95
,
107562
830
Hamsalakshmi
,
A.
,
Arehally Marappa
,
A.M.
,
Joghee
,
M.
,
and Chidambaram
,
S.
and
B
,
S.
(
2022
)
Therapeutic benefits of flavonoids against neuroinflammation: a systematic review
.
Inflammopharmacology
30
,
111
136
831
Saeedi-Boroujeni
,
A.
and
Mahmoudian-Sani
,
M.R.
(
2021
)
Anti-inflammatory potential of quercetin in COVID-19 treatment
.
J. Inflamm. (Lond.)
18
,
3
832
Aucoin
,
M.
,
Cooley
,
K.
,
Saunders
,
P.R.
,
Cardozo
,
V.
,
Remy
,
D.
,
Cramer
,
H.
et al. (
2020
)
The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review
.
Adv. Integr. Med.
7
,
247
251
833
Kell
,
D.B.
(
2021
)
The transporter-mediated cellular uptake and efflux of pharmaceutical drugs and biotechnology products: how and why phospholipid bilayer transport is negligible in real biomembranes
.
Molecules
26
,
5629
834
Amić
,
D.
,
Davidović-Amić
,
D.
,
Bešlo
,
D.
,
Rastija
,
V.
,
Lučić
,
B.
and
Trinajstić
,
N.
(
2007
)
SAR and QSAR of the antioxidant activity of flavonoids
.
Curr. Med. Chem.
14
,
827
845
835
Lee
,
J.H.
and
Kim
,
G.H.
(
2010
)
Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis
.
J. Food Sci.
75
,
H212
H217
836
Lahiri
,
M.
,
Morgan
,
C.
,
Symmons
,
D.P.M.
and
Bruce
,
I.N.
(
2012
)
Modifiable risk factors for RA: prevention, better than cure?
Rheumatology
51
,
499
512
837
Hughes
,
S.D.
,
Ketheesan
,
N.
and
Haleagrahara
,
N.
(
2017
)
The therapeutic potential of plant flavonoids on rheumatoid arthritis
.
Crit. Rev. Food Sci.
57
,
3601
3613
838
Kim
,
H.R.
,
Kim
,
B.M.
,
Won
,
J.Y.
,
Lee
,
K.A.
,
Ko
,
H.M.
,
Kang
,
Y.S.
et al. (
2019
)
Quercetin, a plant polyphenol, has potential for the prevention of bone destruction in rheumatoid arthritis
.
J. Med. Food.
22
,
152
161
839
Sung
,
S.
,
Kwon
,
D.
,
Um
,
E.
and
Kim
,
B.
(
2019
)
Could polyphenols help in the control of rheumatoid arthritis?
Molecules
24
,
1286
840
Mateen
,
S.
,
Moin
,
S.
,
Zafar
,
A.
and
Khan
,
A.Q.
(
2016
)
Redox signaling in rheumatoid arthritis and the preventive role of polyphenols
.
Clin. Chim. Acta
463
,
4
10
841
Christman
,
L.M.
and
Gu
,
L.W.
(
2020
)
Efficacy and mechanisms of dietary polyphenols in mitigating rheumatoid arthritis
.
J. Funct. Foods
71
,
104003
842
Behl
,
T.
,
Upadhyay
,
T.
,
Singh
,
S.
,
Chigurupati
,
S.
,
Alsubayiel
,
A.M.
,
Mani
,
V.
et al. (
2021
)
Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis
.
Molecules
26
,
6570
843
Kuo
,
Y.H.
,
Tsai
,
W.J.
,
Loke
,
S.H.
,
Wu
,
T.S.
and
Chiou
,
W.F.
(
2009
)
Astragalus membranaceus flavonoids (AMF) ameliorate chronic fatigue syndrome induced by food intake restriction plus forced swimming
.
J. Ethnopharmacol.
122
,
28
34
844
Sathyapalan
,
T.
,
Beckett
,
S.
,
Rigby
,
A.S.
,
Mellor
,
D.D.
and
Atkin
,
S.L.
(
2010
)
High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome
.
Nutr. J.
9
,
55
845
Martin
,
and
Ramos
,
S.
(
2021
)
Impact of cocoa flavanols on human health
.
Food Chem. Toxicol.
151
,
112121
846
Russo
,
M.
,
Moccia
,
S.
,
Spagnuolo
,
C.
,
Tedesco
,
I.
and
Russo
,
G.L.
(
2020
)
Roles of flavonoids against coronavirus infection
.
Chem. Biol. Interact.
328
,
109211
847
Jo
,
S.
,
Kim
,
S.
,
Kim
,
D.Y.
,
Kim
,
M.S.
and
Shin
,
D.H.
(
2020
)
Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro
.
J. Enzyme Inhib. Med. Chem.
35
,
1539
1544
848
Kumari
,
A.
,
Rajput
,
V.S.
,
Nagpal
,
P.
,
Kukrety
,
H.
,
Grover
,
S.
and
Grover
,
A.
(
2020
)
Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin
.
J. Biomol. Struct. Dyn.
40
,
4987
4999
849
Udrea
,
A.M.
,
Mernea
,
M.
,
Buiu
,
C.
and
Avram
,
S.
(
2020
)
Scutellaria baicalensis flavones as potent drugs against acute respiratory injury during SARS-CoV-2 infection: structural biology approaches
.
Processes
8
,
1468
850
Song
,
J.
,
Zhang
,
L.
,
Xu
,
Y.
,
Yang
,
D.
,
Zhang
,
L.
,
Yang
,
S.
et al. (
2021
)
The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro
.
Biochem. Pharmacol.
183
,
114302
851
Zandi
,
K.
,
Musall
,
K.
,
Oo
,
A.
,
Cao
,
D.
,
Liang
,
B.
,
Hassandarvish
,
P.
et al. (
2021
)
Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase
.
Microorganisms
9
,
893
852
Alzaabi
,
M.M.
,
Hamdy
,
R.
,
Ashmawy
,
N.S.
,
Hamoda
,
A.M.
,
Alkhayat
,
F.
,
Khademi
,
N.N.
et al. (
2022
)
Flavonoids are promising safe therapy against COVID-19
.
Phytochem. Rev.
21
,
291
312
853
Kaul
,
R.
,
Paul
,
P.
,
Kumar
,
S.
,
Busselberg
,
D.
,
Dwivedi
,
V.D.
and
Chaari
,
A.
(
2021
)
Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: systematic review
.
Int. J. Mol. Sci
22
,
11069
854
Kumar
,
S.
,
Paul
,
P.
,
Yadav
,
P.
,
Kaul
,
R.
,
Maitra
,
S.S.
,
Jha
,
S.K.
et al. (
2022
)
A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle
.
Comput. Biol. Med.
142
,
105231
855
Santana
,
F.P.R.
,
Thevenard
,
F.
,
Gomes
,
K.S.
,
Taguchi
,
L.
,
Câmara
,
N.O.S.
,
Stilhano
,
R.S.
et al. (
2021
)
New perspectives on natural flavonoids on COVID-19-induced lung injuries
.
Phytother. Res.
35
,
4988
5006
856
Liskova
,
A.
,
Samec
,
M.
,
Koklesova
,
L.
,
Samuel
,
S.M.
,
Zhai
,
K.
,
Al-Ishaq
,
R.K.
et al. (
2021
)
Flavonoids against the SARS-CoV-2 induced inflammatory storm
.
Biomed. Pharmacother.
138
,
111430
857
Agrawal
,
P.K.
,
Agrawal
,
C.
and
Blunden
,
G.
(
2021
)
Pharmacological significance of hesperidin and hesperetin, two citrus flavonoids, as promising antiviral compounds for prophylaxis against and combating COVID-19
.
Nat. Prod. Commun.
16
,
1
15
858
Rakshit
,
G.
,
Dagur
,
P.
,
Satpathy
,
S.
,
Patra
,
A.
,
Jain
,
A.
and
Ghosh
,
M.
(
2021
)
Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19)
.
J. Biomol. Struct. Dyn.
1
13
859
Theoharides
,
T.C.
,
Cholevas
,
C.
,
Polyzoidis
,
K.
and
Politis
,
A.
(
2021
)
Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue
.
Biofactors
47
,
232
241
860
Edeas
,
M.
,
Saleh
,
J.
and
Peyssonnaux
,
C.
(
2020
)
Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis?
Int. J. Infect. Dis.
97
,
303
305
861
Perricone
,
C.
,
Bartoloni
,
E.
,
Bursi
,
R.
,
Cafaro
,
G.
,
Guidelli
,
G.M.
,
Shoenfeld
,
Y.
et al. (
2020
)
COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy
.
Immunol. Res.
68
,
213
224
862
Bastin
,
A.
,
Shiri
,
H.
,
Zanganeh
,
S.
,
Fooladi
,
S.
,
Momeni Moghaddam
,
M.A.
,
Mehrabani
,
M.
et al. (
2021
)
Iron Chelator or iron supplement consumption in COVID-19? The Role of iron with severity infection
.
Biol. Trace Elem. Res
.
863
Girelli
,
D.
,
Marchi
,
G.
,
Busti
,
F.
and
Vianello
,
A.
(
2021
)
Iron metabolism in infections: focus on COVID-19
.
Semin. Hematol.
58
,
182
187
864
Mahroum
,
N.
,
Alghory
,
A.
,
Kiyak
,
Z.
,
Alwani
,
A.
,
Seida
,
R.
,
Alrais
,
M.
et al. (
2022
)
Ferritin - from iron, through inflammation and autoimmunity, to COVID-19
.
J. Autoimmun.
126
,
102778
865
Poonkuzhi Naseef
,
P.
,
Elayadeth-Meethal
,
M.
,
Salim
,
K.T.M.
,
Anjana
,
A.
,
Muhas
,
C.
,
Vajid
,
K.A.
et al. (
2022
)
Therapeutic potential of induced iron depletion using iron chelators in COVID-19
.
Saudi J. Biol. Sci
20
,
1947
1956
866
Taneri
,
P.E.
,
Gómez-Ochoa
,
S.A.
,
Llanaj
,
E.
,
Raguindin
,
P.F.
,
Rojas
,
L.Z.
,
Roa-Díaz
,
Z.M.
et al. (
2020
)
Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis
.
Eur. J. Epidemiol.
35
,
763
773
867
Birlutiu
,
V.
,
Birlutiu
,
R.M.
and
Chicea
,
L.
(
2021
)
Off-label tocilizumab and adjuvant iron chelator effectiveness in a group of severe COVID-19 pneumonia patients: a single center experience
.
Medicine (Baltimore)
100
,
e25832
868
Carota
,
G.
,
Ronsisvalle
,
S.
,
Panarello
,
F.
,
Tibullo
,
D.
,
Nicolosi
,
A.
and
Li Volti
,
G.
(
2021
)
Role of iron chelation and protease inhibition of natural products on COVID-19 infection
.
J. Clin. Med.
10
,
2306
869
Habib
,
H.M.
,
Ibrahim
,
S.
,
Zaim
,
A.
and
Ibrahim
,
W.H.
(
2021
)
The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators
.
Biomed. Pharmacother.
136
,
111228
870
Vlahakos
,
V.D.
,
Marathias
,
K.P.
,
Arkadopoulos
,
N.
and
Vlahakos
,
D.V.
(
2021
)
Hyperferritinemia in patients with COVID-19: an opportunity for iron chelation?
Artif. Organs
45
,
163
167
871
Henss
,
L.
,
Auste
,
A.
,
Schurmann
,
C.
,
Schmidt
,
C.
,
von Rhein
,
C.
,
Muhlebach
,
M.D.
et al. (
2021
)
The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection
.
J. Gen. Virol
102
,
001574
872
Mandel
,
S.
,
Weinreb
,
O.
,
Reznichenko
,
L.
,
Kalfon
,
L.
and
Amit
,
T.
(
2006
)
Green tea catechins as brain-permeable, non toxic iron chelators to "iron out iron" from the brain
.
J. Neural Transm.-Suppl.
50
,
229
234
873
Mandel
,
S.
,
Amit
,
T.
,
Reznichenko
,
L.
,
Weinreb
,
O.
and
Youdim
,
M.B.H.
(
2006
)
Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders
.
Mol. Nutr. Food Res.
50
,
229
234
874
Hatcher
,
H.C.
,
Singh
,
R.N.
,
Torti
,
F.M.
and
Torti
,
S.V.
(
2009
)
Synthetic and natural iron chelators: therapeutic potential and clinical use
.
Future Med. Chem.
1
,
1643
1670
875
Weinreb
,
O.
,
Amit
,
T.
,
Mandel
,
S.
and
Youdim
,
M.B.
(
2009
)
Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties
.
Genes Nutr.
4
,
283
296
876
Riegsecker
,
S.
,
Wiczynski
,
D.
,
Kaplan
,
M.J.
and
Ahmed
,
S.
(
2013
)
Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis
.
Life Sci.
93
,
307
312
877
Che
,
F.
,
Wang
,
G.
,
Yu
,
J.
,
Wang
,
X.
,
Lu
,
Y.
,
Fu
,
Q.
et al. (
2017
)
Effects of epigallocatechin-3-gallate on iron metabolism in spinal cord motor neurons
.
Mol. Med. Rep.
16
,
3010
3014
878
Zhao
,
J.
,
Xu
,
L.
,
Liang
,
Q.
,
Sun
,
Q.
,
Chen
,
C.
,
Zhang
,
Y.
et al. (
2017
)
Metal chelator EGCG attenuates Fe(III)-induced conformational transition of alpha-synuclein and protects AS-PC12 cells against Fe(III)-induced death
.
J. Neurochem.
143
,
136
146
879
Xu
,
Q.
,
Langley
,
M.
,
Kanthasamy
,
A.G.
and
Reddy
,
M.B.
(
2017
)
Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease
.
J. Nutr.
147
,
1926
1931
880
Koonyosying
,
P.
,
Tantiworawit
,
A.
,
Hantrakool
,
S.
,
Utama-Ang
,
N.
,
Cresswell
,
M.
,
Fucharoen
,
S.
et al. (
2020
)
Consumption of a green tea extract-curcumin drink decreases blood urea nitrogen and redox iron in beta-thalassemia patients
.
Food Funct.
11
,
932
943
881
Mhatre
,
S.
,
Srivastava
,
T.
,
Naik
,
S.
and
Patravale
,
V.
(
2021
)
Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review
.
Phytomedicine
85
,
153286
882
Campione
,
E.
,
Cosio
,
T.
,
Rosa
,
L.
,
Lanna
,
C.
,
Di Girolamo
,
S.
,
Gaziano
,
R.
et al. (
2020
)
Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation
.
Int. J. Mol. Sci.
21
,
4903
883
Cegolon
,
L.
,
Javanbakht
,
M.
and
Mastrangelo
,
G.
(
2020
)
Nasal disinfection for the prevention and control of COVID-19: a scoping review on potential chemo-preventive agents
.
Int. J. Hyg. Environ. Health
230
,
113605
884
AlKhazindar
,
M.
and
Elnagdy
,
S.M.
(
2020
)
Can lactoferrin boost human immunity against COVID-19?
Pathog. Glob. Health
114
,
:234-
:2235
885
de Carvalho
,
M.
,
da Rocha Matos
,
C.A.
,
Caetano
,
A.
,
de Sousa Junior
,
B.C.
,
da Costa Campos
,
I.P.
,
Geraldino
,
S.P.
et al. (
2020
)
In vitro inhibition of SARS-CoV-2 infection by bovine lactoferrin
.
bioRxiv
2020.2005.2013.093781
886
Wang
,
Y.
,
Wang
,
P.
,
Wang
,
H.
,
Luo
,
Y.
,
Wan
,
L.
,
Jiang
,
M.
et al. (
2020
)
Lactoferrin for the treatment of COVID-19 (review)
.
Exp. Ther. Med.
20
,
272
887
Chang
,
R.
,
Ng
,
T.B.
and
Sun
,
W.Z.
(
2020
)
Lactoferrin as potential preventative and adjunct treatment for COVID-19
.
Int. J. Antimicrob. Agents
56
,
106118
,
888
Campione
,
E.
,
Lanna
,
C.
,
Cosio
,
T.
,
Rosa
,
L.
,
Conte
,
M.P.
,
Iacovelli
,
F.
et al. (
2021
)
Lactoferrin as antiviral treatment in COVID-19 management: preliminary evidence
.
Int. J. Environ. Res. Public Health
18
,
10985
889
Kucia
,
M.
,
Wietrak
,
E.
,
Szymczak
,
M.
,
Majchrzak
,
M.
and
Kowalczyk
,
P.
(
2021
)
Protective action of L. salivarius SGL03 and lactoferrin against COVID-19 infections in human nasopharynx
.
Materials (Basel)
14
,
3086
890
Rosa
,
L.
,
Tripepi
,
G.
,
Naldi
,
E.
,
Aimati
,
M.
,
Santangeli
,
S.
,
Venditto
,
F.
et al. (
2021
)
Ambulatory COVID-19 patients treated with lactoferrin as a supplementary antiviral agent: a preliminary study
.
J. Clin. Med.
10
,
4276
891
Wotring
,
J.W.
,
Fursmidt
,
R.
,
Ward
,
L.
and
Sexton
,
J.Z.
(
2022
)
Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern
.
J. Dairy Sci.
105
,
2791
2802
892
Zimecki
,
M.
,
Actor
,
J.K.
and
Kruzel
,
M.L.
(
2021
)
The potential for lactoferrin to reduce SARS-CoV-2 induced cytokine storm
.
Int. Immunopharmacol.
95
,
107571
893
Gallo
,
V.
,
Giansanti
,
F.
,
Arienzo
,
A.
and
Antonini
,
G.
(
2022
)
Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection
.
J. Funct. Foods
89
,
104932
894
Shafqat
,
F.
,
Ur Rehman
,
S.
and
Niaz
,
K.
(
2022
)
Lactoferrin can attenuate SARS-CoV-2: an analysis of evidential relations
.
Biomed. Res. Ther.
9
,
4901
4919
895
Tian
,
J.
,
Tang
,
L.
,
Liu
,
X.
,
Li
,
Y.
,
Chen
,
J.
,
Huang
,
W.
et al. (
2022
)
Populations in Low-Magnesium areas were associated with higher risk of infection in COVID-19's early transmission: a nationwide retrospective cohort study in the United States
.
Nutrients
14
,
909
896
DiNicolantonio
,
J.J.
and
O'Keefe
,
J.H.
(
2021
)
Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients
.
Mo Med.
118
,
68
73
897
Cox
,
I.M.
,
Campbell
,
M.J.
and
Dowson
,
D.
(
1991
)
Red blood cell magnesium and chronic fatigue syndrome
.
Lancet
337
,
757
760
898
Maier
,
J.A.M.
,
Malpuech-Brugère
,
C.
,
Zimowska
,
W.
,
Rayssiguier
,
Y.
and
Mazur
,
A.
(
2004
)
Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis
.
Biochim. Biophys. Acta
1689
,
13
21
899
Claustrat
,
B.
,
Brun
,
J.
and
Chazot
,
G.
(
2005
)
The basic physiology and pathophysiology of melatonin
.
Sleep Med. Rev.
9
,
11
24
900
Reiter
,
R.J.
(
1998
)
Oxidative damage in the central nervous system: protection by melatonin
.
Progr. Neurobiol.
56
,
359
384
901
Reiter
,
R.J.
,
Paredes
,
S.D.
,
Manchester
,
L.C.
and
Tan
,
D.X.
(
2009
)
Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin
.
Crit. Rev. Biochem. Mol. Biol.
44
,
175
200
902
Reiter
,
R.J.
,
Rosales-Corral
,
S.
,
Tan
,
D.X.
,
Jou
,
M.J.
,
Galano
,
A.
and
Xu
,
B.
(
2017
)
Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas
.
Cell. Mol. Life Sci.
74
,
3863
3881
903
Brown
,
G.M.
,
Pandi-Perumal
,
S.R.
,
Pupko
,
H.
,
Kennedy
,
J.L.
and
Cardinali
,
D.P.
(
2021
)
Melatonin as an add-on treatment of COVID-19 infection: current status
.
Diseases
9
,
64
904
Loh
,
D.
(
2020
)
The potential of melatonin in the prevention and attenuation of oxidative hemolysis and myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding
.
Melatonin Res.
3
,
380
416
905
Camp
,
O.G.
,
Bai
,
D.
,
Gonullu
,
D.C.
,
Nayak
,
N.
and
Abu-Soud
,
H.M.
(
2021
)
Melatonin interferes with COVID-19 at several distinct ROS-related steps
.
J. Inorg. Biochem.
223
,
111546
906
Castle
,
R.D.
,
Williams
,
M.A.
,
Bushell
,
W.C.
,
Rindfleisch
,
J.A.
,
Peterson
,
C.T.
,
Marzolf
,
J.
et al. (
2021
)
Implications for systemic approaches to COVID-19: effect sizes of remdesivir, tocilizumab, melatonin, vitamin D3, and meditation
.
J. Inflamm. Res.
14
,
4859
4876
907
Ramos
,
E.
,
López-Muñoz
,
F.
,
Gil-Martin
,
E.
,
Egea
,
J.
,
Álvarez-Merz
,
I.
,
Painuli
,
S.
et al. (
2021
)
The coronavirus disease 2019 (COVID-19): key emphasis on melatonin safety and therapeutic efficacy
.
Antioxidants (Basel)
10
,
1152
908
Reiter
,
R.J.
,
Abreu-Gonzalez
,
P.
,
Marik
,
P.E.
and
Dominguez-Rodriguez
,
A.
(
2020
)
Therapeutic algorithm for use of melatonin in patients with COVID-19
.
Front. Med. (Lausanne)
7
,
226
909
Lan
,
S.H.
,
Lee
,
H.Z.
,
Chao
,
C.M.
,
Chang
,
S.P.
,
Lu
,
L.C.
and
Lai
,
C.C.
(
2022
)
Efficacy of melatonin in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials
.
J. Med. Virol.
94
,
2102
2107
910
Ramlall
,
V.
,
Zucker
,
J.
and
Tatonetti
,
N.
(
2020
)
Melatonin is significantly associated with survival of intubated COVID-19 patients
.
medRxiv
911
Kory
,
P.
,
Meduri
,
G.U.
,
Iglesias
,
J.
,
Varon
,
J.
,
Cadegiani
,
F.A.
and
Marik
,
P.E.
(
2022
)
"MATH+" multi-modal hospital treatment protocol for COVID-19 infection: clinical and scientific rationale
.
J. Clin. Med. Res.
14
,
53
79
912
Yang
,
Y.
,
Duan
,
W.
,
Jin
,
Z.
,
Yi
,
W.
,
Yan
,
J.
,
Zhang
,
S.
et al. (
2013
)
JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury
.
J. Pineal Res.
55
,
275
286
913
Weiss
,
E.
,
Roux
,
O.
,
Moyer
,
J.D.
,
Paugam-Burtz
,
C.
,
Boudaoud
,
L.
,
Ajzenberg
,
N.
et al. (
2020
)
Fibrinolysis resistance: a potential mechanism underlying COVID-19 coagulopathy
.
Thromb. Haemost.
120
,
1343
1345
914
Maier
,
C.L.
,
Sarker
,
T.
,
Szlam
,
F.
and
Sniecinski
,
R.M.
(
2021
)
COVID-19 patient plasma demonstrates resistance to tPA-induced fibrinolysis as measured by thromboelastography
.
J. Thromb. Thrombolysis.
52
,
766
771
915
Zuo
,
Y.
,
Warnock
,
M.
,
Harbaugh
,
A.
,
Yalavarthi
,
S.
,
Gockman
,
K.
,
Zuo
,
M.
et al. (
2021
)
Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients
.
Sci. Rep.
11
,
1580
916
Altaf
,
F.
,
Wu
,
S.R.
and
Kasim
,
V.
(
2021
)
Role of fibrinolytic enzymes in anti-thrombosis therapy
.
Front. Mol. Biosci.
8
,
680397
917
Kumar
,
S.S.
and
Sabu
,
A.
(
2019
)
Fibrinolytic enzymes for thrombolytic therapy
.
Adv. Exp. Med. Biol.
1148
,
345
381
918
Ali
,
M.
,
and Bavisetty
,
A.M.
and
B
,
S.C.
(
2020
)
Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: a comprehensive review
.
Int. J. Biol. Macromol.
163
,
1498
1517
919
Diwan
,
D.
,
Usmani
,
Z.
,
Sharma
,
M.
,
Nelson
,
J.W.
,
Thakur
,
V.K.
,
Christie
,
G.
et al. (
2021
)
Thrombolytic enzymes of microbial origin: a review
.
Int. J. Mol. Sci
22
,
10468
920
Zhou
,
X.Q.
,
Liu
,
L.Z.
and
Zeng
,
X.R.
(
2021
)
Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: a review
.
Food Struct.
30
,
100219
921
Fujita
,
M.
,
Hong
,
K.
,
Ito
,
Y.
,
Fujii
,
R.
,
Kariya
,
K.
and
Nishimuro
,
S.
(
1995
)
Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat
.
Biol. Pharm. Bull.
18
,
1387
1391
922
Suzuki
,
Y.
,
Kondo
,
K.
,
Matsumoto
,
Y.
,
Zhao
,
B.Q.
,
Otsuguro
,
K.
,
Maeda
,
T.
et al. (
2003
)
Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery
.
Life Sci.
73
,
1289
1298
923
Tai
,
M.W.
and
Sweet
,
B.V.
(
2006
)
Nattokinase for prevention of thrombosis
.
Am. J. Health Syst. Pharm.
63
,
1121
1123
924
Hsu
,
R.L.
,
Lee
,
K.T.
,
Wang
,
J.H.
,
Lee
,
L.Y.
and
Chen
,
R.P.
(
2009
)
Amyloid-degrading ability of nattokinase from Bacillus subtilis natto
.
J. Agric. Food Chem.
57
,
503
508
925
Fujita
,
M.
,
Hong
,
K.
,
Ito
,
Y.
,
Misawa
,
S.
,
Takeuchi
,
N.
,
Kariya
,
K.
et al. (
1995
)
Transport of nattokinase across the rat intestinal tract
.
Biol. Pharm. Bull.
18
,
1194
1196
926
Sumi
,
H.
,
Hamada
,
H.
,
Nakanishi
,
K.
and
Hiratani
,
H.
(
1990
)
Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase
.
Acta Haematol.
84
,
139
143
927
Sumi
,
H.
,
Yanagisawa
,
Y.
,
Yatagai
,
C.
and
Saito
,
J.
(
2004
)
Natto bacillus as an oral fibrinolytic agent: nattokinase activity and the ingestion effect of Bacillus subtilis natto
.
Food Sci. Technol. Res.
10
,
17
20
928
Chen
,
H.
,
McGowan
,
E.M.
,
Ren
,
N.
,
Lal
,
S.
,
Nassif
,
N.
,
Shad-Kaneez
,
F.
et al. (
2018
)
Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases
.
Biomark. Insights
13
,
1177271918785130
929
Ero
,
M.P.
,
Ng
,
C.M.
,
Mihailovski
,
T.
,
Harvey
,
N.R.
and
Lewis
,
B.H.
(
2013
)
A pilot study on the serum pharmacokinetics of nattokinase in humans following a single, oral, daily dose
.
Altern. Ther. Health Med.
19
,
16
19
930
Dabbagh
,
F.
,
Negahdaripour
,
M.
,
Berenjian
,
A.
,
Behfar
,
A.
,
Mohammadi
,
F.
,
Zamani
,
M.
et al. (
2014
)
Nattokinase: production and application
.
Appl. Microbiol. Biotechnol.
98
,
9199
9206
931
Kapoor
,
R.
,
Harde
,
H.
,
Jain
,
S.
,
Panda
,
A.K.
and
Panda
,
B.P.
(
2015
)
Downstream processing, formulation development and antithrombotic evaluation of microbial nattokinase
.
J. Biomed. Nanotechnol.
11
,
1213
1224
932
Wu
,
H.
,
Wang
,
H.
,
Xu
,
F.
,
Chen
,
J.
,
Duan
,
L.
and
Zhang
,
F.
(
2019
)
Acute toxicity and genotoxicity evaluations of Nattokinase, a promising agent for cardiovascular diseases prevention
.
Regul. Toxicol. Pharmacol.
103
,
205
209
933
Gallelli
,
G.
,
Di Mizio
,
G.
,
Palleria
,
C.
,
Siniscalchi
,
A.
,
Rubino
,
P.
,
Muraca
,
L.
et al. (
2021
)
Data recorded in real life support the safety of nattokinase in patients with vascular diseases
.
Nutrients
13
,
2031
934
Metkar
,
S.K.
,
Girigoswami
,
A.
,
Murugesan
,
R.
and
Girigoswami
,
K.
(
2017
)
In vitro and in vivo insulin amyloid degradation mediated by serratiopeptidase
.
Mater. Sci. Eng. C Mater. Biol. Appl.
70
,
728
735
935
Sumi
,
H.
,
Hamada
,
H.
,
Tsushima
,
H.
,
Mihara
,
H.
and
Muraki
,
H.
(
1987
)
A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet
.
Experientia
43
,
1110
1111
936
Kurosawa
,
Y.
,
Nirengi
,
S.
,
Homma
,
T.
,
Esaki
,
K.
,
Ohta
,
M.
,
Clark
,
J.F.
et al. (
2015
)
A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles
.
Sci. Rep.
5
,
11601
937
Selvarajan
,
E.
and
Bhatnagar
,
N.
(
2017
)
Nattokinase: an updated critical review on challenges and perspectives
.
Cardiovasc. Hematol. Agents Med. Chem.
15
,
126
135
938
Weng
,
Y.
,
Yao
,
J.
,
Sparks
,
S.
and
Wang
,
K.Y.
(
2017
)
Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease
.
Int. J. Mol. Sci.
18
,
523
939
Takagaki
,
S.
,
Suzuki
,
M.
,
Suzuki
,
E.
and
Hasumi
,
K.
(
2020
)
Unsaturated fatty acids enhance the fibrinolytic activity of subtilisin NAT (nattokinase)
.
J. Food Biochem.
44
,
e13326
940
Oba
,
M.
,
Rongduo
,
W.
,
Saito
,
A.
,
Okabayashi
,
T.
,
Yokota
,
T.
,
Yasuoka
,
J.
et al. (
2021
)
Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro
.
Biochem. Biophys. Res. Commun.
570
,
21
25
941
Yanagisawa
,
Y.
,
Chatake
,
T.
,
Chiba-Kamoshida
,
K.
,
Naito
,
S.
,
Ohsugi
,
T.
,
Sumi
,
H.
et al. (
2010
)
Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto
.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
66
,
1670
1673
942
Yanagisawa
,
Y.
,
Chatake
,
T.
,
Naito
,
S.
,
Ohsugi
,
T.
,
Yatagai
,
C.
,
Sumi
,
H.
et al. (
2013
)
X-ray structure determination and deuteration of nattokinase
.
J. Synchrotron. Radiat.
20
,
875
879
943
Chen
,
P.T.
,
Chiang
,
C.J.
and
Chao
,
Y.P.
(
2007
)
Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology
.
Biotechnol. Prog.
23
,
1327
1332
944
Chen
,
P.T.
,
Chiang
,
C.J.
and
Chao
,
Y.P.
(
2007
)
Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis
.
Biotechnol. Prog.
23
,
808
813
945
Cai
,
D.
,
Zhu
,
C.
and
Chen
,
S.
(
2017
)
Microbial production of nattokinase: current progress, challenge and prospect
.
World J. Microbiol. Biotechnol.
33
,
84
946
Liu
,
Z.
,
Zheng
,
W.
,
Ge
,
C.
,
Cui
,
W.
,
Zhou
,
L.
and
Zhou
,
Z.
(
2019
)
High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters
.
BMC Microbiol.
19
,
89
947
Liu
,
Z.
,
Zhao
,
H.
,
Han
,
L.
,
Cui
,
W.
,
Zhou
,
L.
and
Zhou
,
Z.
(
2019
)
Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis
.
Biotechnol. Bioeng.
116
,
1833
1843
948
Li
,
C.
,
Du
,
Z.
,
Qi
,
S.
,
Zhang
,
X.
,
Wang
,
M.
,
Zhou
,
Y.
et al. (
2020
)
Food-grade expression of nattokinase in Lactobacillus delbrueckii subsp. bulgaricus and its thrombolytic activity in vitro
.
Biotechnol. Lett.
42
,
2179
2187
949
Wei
,
X.
,
Zhou
,
Y.
,
Chen
,
J.
,
Cai
,
D.
,
Wang
,
D.
,
Qi
,
G.
et al. (
2015
)
Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization
.
J. Ind. Microbiol. Biotechnol.
42
,
287
295
950
Guangbo
,
Y.
,
Min
,
S.
,
Wei
,
S.
,
Lixin
,
M.
,
Chao
,
Z.
,
Yaping
,
W.
et al. (
2021
)
Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity
.
BMC Biotechnol.
21
,
49
951
Jang
,
J.Y.
,
Kim
,
T.S.
,
Cai
,
J.
,
Kim
,
J.
,
Kim
,
Y.
,
Shin
,
K.
et al. (
2013
)
Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation
.
Lab. Anim. Res.
29
,
221
225
952
Wu
,
H.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Xu
,
F.
,
Chen
,
J.
,
Duan
,
L.
et al. (
2020
)
Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress
.
Redox Biol.
32
,
101500
953
Kim
,
J.Y.
,
Gum
,
S.N.
,
Paik
,
J.K.
,
Lim
,
H.H.
,
Kim
,
K.C.
,
Ogasawara
,
K.
et al. (
2008
)
Effects of nattokinase on blood pressure: a randomized, controlled trial
.
Hypertens. Res.
31
,
1583
1588
954
Weichmann
,
F.
and
Rohdewald
,
P.
(
2020
)
Projected supportive effects of Pycnogenol() in patients suffering from multi-dimensional health impairments after a SARS-CoV2 infection
.
Int. J. Antimicrob. Agents
56
,
106191
955
Cesarone
,
M.R.
,
Belcaro
,
G.
,
Nicolaides
,
A.N.
,
Ricci
,
A.
,
Geroulakos
,
G.
,
Ippolito
,
E.
et al. (
2003
)
Prevention of venous thrombosis in long-haul flights with flite tabs: the LONFLIT-FLITE randomized, controlled trial
.
Angiology
54
,
531
539
956
Bhagat
,
S.
,
Agarwal
,
M.
and
Roy
,
V.
(
2013
)
Serratiopeptidase: a systematic review of the existing evidence
.
Int. J. Surg.
11
,
209
217
957
Jadhav
,
S.B.
,
Shah
,
N.
,
Rathi
,
A.
,
Rathi
,
V.
and
Rathi
,
A.
(
2020
)
Serratiopeptidase: insights into the therapeutic applications
.
Biotechnol. Rep. (Amst.)
28
,
e00544
958
Sharma
,
C.
,
Jha
,
N.K.
,
Meeran
,
M.F.N.
,
Patil
,
C.R.
,
Goyal
,
S.N.
and
Ojha
,
S.
(
2021
)
Serratiopeptidase, a serine protease anti-inflammatory, fibrinolytic, and mucolytic drug, can be a useful adjuvant for management in COVID-19
.
Front. Pharmacol.
12
,
603997
959
Vianney
,
Y.M.
,
Tjoa
,
S.E.E.
,
Aditama
,
R.
and
Putra
,
S.E.D.
(
2019
)
Designing a less immunogenic nattokinase from Bacillus subtilis subsp. natto: a computational mutagenesis
.
J. Mol. Model.
25
,
337
960
Yan
,
X.M.
,
Kim
,
C.H.
,
Lee
,
C.K.
,
Shin
,
J.S.
,
Cho
,
I.H.
and
Sohn
,
U.D.
(
2010
)
Intestinal absorption of fibrinolytic and proteolytic lumbrokinase extracted from earthworm, Eisenia andrei
.
Korean J. Physiol. Pharmacol.
14
,
71
75
961
Mihara
,
H.
,
Sumi
,
H.
,
Yoneta
,
T.
,
Mizumoto
,
H.
,
Ikeda
,
R.
,
Seiki
,
M.
et al. (
1991
)
A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus
.
Jpn. J. Physiol.
41
,
461
472
962
Cho
,
I.H.
,
Choi
,
E.S.
and
Lee
,
H.H.
(
2004
)
Molecular cloning, sequencing, and expression of a fibrinolytic serine-protease gene from the earthworm Lumbricus rubellus
.
J. Biochem. Mol. Biol.
37
,
574
581
963
Kasim
,
M.
,
Kiat
,
A.A.
,
Rohman
,
M.S.
,
Hanifah
,
Y.
and
Kiat
,
H.
(
2009
)
Improved myocardial perfusion in stable angina pectoris by oral lumbrokinase: a pilot study
.
J. Altern. Complement. Med.
15
,
539
544
964
Wang
,
Y.H.
,
Chen
,
K.M.
,
Chiu
,
P.S.
,
Lai
,
S.C.
,
Su
,
H.H.
,
Jan
,
M.S.
et al. (
2016
)
Lumbrokinase attenuates myocardial ischemia-reperfusion injury by inhibiting TLR4 signaling
.
J. Mol. Cell. Cardiol.
99
,
113
122
965
Wang
,
Y.H.
,
Li
,
S.A.
,
Huang
,
C.H.
,
Su
,
H.H.
,
Chen
,
Y.H.
,
Chang
,
J.T.
et al. (
2018
)
Sirt1 activation by post-ischemic treatment with lumbrokinase protects against myocardial ischemia-reperfusion injury
.
Front. Pharmacol.
9
,
636
966
Dickey
,
A.
,
Wang
,
N.
,
Cooper
,
E.
,
Tull
,
L.
,
Breedlove
,
D.
,
Mason
,
H.
et al. (
2017
)
Transient expression of lumbrokinase (PI239) in tobacco (Nicotiana tabacum) using a geminivirus-based single replicon system dissolves fibrin and blood clots
.
Evid. Based Complement. Alternat. Med.
2017
,
6093017
967
Wang
,
K.Y.
,
Tull
,
L.
,
Cooper
,
E.
,
Wang
,
N.
and
Liu
,
D.
(
2013
)
Recombinant protein production of earthworm lumbrokinase for potential antithrombotic application
.
Evid. Based Complement. Alternat. Med.
2013
,
783971
968
Rathi
,
A.
,
Jadhav
,
S.B.
and
Shah
,
N.
(
2021
)
A randomized controlled trial of the efficacy of systemic enzymes and probiotics in the resolution of post-COVID fatigue
.
Medicines (Basel)
8
,
47
969
Cao
,
Y.J.
,
Zhang
,
X.
,
Wang
,
W.H.
,
Zhai
,
W.Q.
,
Qian
,
J.F.
,
Wang
,
J.S.
et al. (
2013
)
Oral fibrinogen-depleting agent lumbrokinase for secondary ischemic stroke prevention: results from a multicenter, randomized, parallel-group and controlled clinical trial
.
Chin. Med. J. (Engl.)
126
,
4060
4065
970
Chen
,
Y.
,
Liu
,
Y.
,
Zhang
,
J.
,
Zhou
,
K.
,
Zhang
,
X.
,
Dai
,
H.
et al. (
2022
)
Efficacy and safety of lumbrokinase plus aspirin versus aspirin alone for acute ischemic stroke (LUCENT): study protocol for a multicenter randomized controlled trial
.
Trials
23
,
285
971
Novaes
,
d.L.
,
Jozala
,
L.C.
,
Lopes
,
A.F.
,
de Carvalho Santos-Ebinuma
,
A.M.
,
Mazzola
,
V.
,
G
,
P.
et al. (
2016
)
Stability, purification, and applications of bromelain: a review
.
Biotechnol. Prog.
32
,
5
13
972
Pavan
,
R.
,
Jain
,
S.
and
Shraddha and Kumar
,
A.
(
2012
)
Properties and therapeutic application of bromelain: a review
.
Biotechnol. Res. Int.
2012
,
976203
973
Hikisz
,
P.
and
Bernasinska-Slomczewska
,
J.
(
2021
)
Beneficial properties of bromelain
.
Nutrients
13
,
4313
974
Varilla
,
C.
,
Marcone
,
M.
,
Paiva
,
L.
and
Baptista
,
J.
(
2021
)
Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. A summary
.
Foods
10
,
2249
975
Owoyele
,
B.V.
,
Bakare
,
A.O.
and
Ologe
,
M.O.
(
2020
)
Bromelain: a review on its potential as a therapy for the management of COVID-19
.
Niger. J. Physiol. Sci.
35
,
10
19
976
Sagar
,
S.
,
Rathinavel
,
A.K.
,
Lutz
,
W.E.
,
Struble
,
L.R.
,
Khurana
,
S.
,
Schnaubelt
,
A.T.
et al. (
2021
)
Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein
.
Clin. Transl. Med.
11
,
e281
977
Sayıner
,
S.
,
Velioğlu-Öğünç
,
A.
and
Şehirli
,
. (
2021
)
Bromelain: a potential therapeutic application in SARSCoV-2 infected patients
.
Ann. Antivir. Antriretrovir.
5
,
015
018
978
Kritis
,
P.
,
Karampela
,
I.
,
Kokoris
,
S.
and
Dalamaga
,
M.
(
2020
)
The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19
.
Metab. Open
8
,
100066
979
Richardson
,
D.P.
and
Lovegrove
,
J.A.
(
2020
)
Nutritional status of micronutrients as a possible and modifiable risk factor for COVID-19: a UK perspective
.
Br. J. Nutr.
125
,
678
684
980
Narayanan
,
N.
and
Nair
,
D.T.
(
2020
)
Vitamin B12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 virus
.
IUBMB Life
72
,
2112
2120
981
Jimenez-Guardeño
,
J.M.
,
Ortega-Prieto
,
A.M.
,
Moreno
,
B.M.
,
Maguire
,
T.J.A.
,
Richardson
,
A.
,
Diaz-Hernandez
,
J.I.
et al. (
2021
)
Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2 including vitamin B12
.
bioRxiv
2021.2006.2025.449609
982
Batista
,
K.S.
,
Cintra
,
V.M.
,
Lucena
,
P.A.F.
,
Manhães-de-Castro
,
R.
,
Toscano
,
A.E.
,
Costa
,
L.P.
et al. (
2022
)
The role of vitamin B12 in viral infections: a comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection
.
Nutr. Rev.
80
,
561
578
983
Carroll
,
H.A.
,
Millar
,
E.
and
Deans
,
K.A.
(
2022
)
Vitamin B12 and D deficiency as cofactors of COVID-19 vaccine-induced chronic neurological adverse reactions: two cases and a hypothesis
.
Res. Sq.
984
Benskin
,
L.L.
(
2020
)
A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency
.
Front. Public Health
8
,
513
985
Wichniak
,
A.
,
Kania
,
A.
,
Sieminski
,
M.
and
Cubala
,
W.J.
(
2021
)
Melatonin as a potential adjuvant treatment for COVID-19 beyond sleep disorders
.
Int. J. Mol. Sci.
22
,
8623
986
Varikasuvu
,
S.R.
,
Thangappazham
,
B.
,
Vykunta
,
A.
,
Duggina
,
P.
,
Manne
,
M.
,
Raj
,
H.
et al. (
2022
)
COVID-19 and vitamin D (Co-VIVID study): a systematic review and meta-analysis of randomized controlled trials
.
Expert. Rev. Anti Infect. Ther.
20
,
907
913
987
Anastasi
,
E.
,
Ialongo
,
C.
,
Labriola
,
R.
,
Ferraguti
,
G.
,
Lucarelli
,
M.
and
Angeloni
,
A.
(
2020
)
Vitamin K deficiency and COVID-19
.
Scand. J. Clin. Lab. Investig.
80
,
525
527
988
Desai
,
A.P.
,
Dirajlal-Fargo
,
S.
,
Durieux
,
J.C.
,
Tribout
,
H.
,
Labbato
,
D.
and
McComsey
,
G.A.
(
2021
)
Vitamin K & D deficiencies are independently associated with COVID-19 disease severity
.
Open Forum. Infect. Dis.
8
,
ofab408
989
Kudelko
,
M.
,
Yip
,
T.F.
,
Law
,
G.C.H.
and
Lee
,
S.M.Y.
(
2021
)
Potential beneficial effects of vitamin K in SARS-CoV-2 induced vascular disease?
Immunol. Lett.
1
,
17
29
990
Linneberg
,
A.
,
Kampmann
,
F.B.
,
Israelsen
,
S.B.
,
Andersen
,
L.R.
,
Jørgensen
,
H.L.
,
Sandholt
,
H.
et al. (
2021
)
The association of low vitamin K status with mortality in a cohort of 138 hospitalized patients with COVID-19
.
Nutrients
13
,
1985
991
Cara
,
K.C.
,
Beauchesne
,
A.R.
,
Li
,
R.
and
Chung
,
M.
(
2022
)
Cochrane review summary on "vitamin D supplementation for the treatment of COVID-19: a living systematic review"
.
J. Diet. Suppl.
19
,
143
145
992
Hu
,
Y.
,
Kung
,
J.
,
Cave
,
A.
and
Banh
,
H.L.
(
2022
)
Effects of vitamin D serum level on morbidity and mortality in patients with COVID-19: a systematic review and meta-analysis
.
J. Pharm. Pharm. Sci.
25
,
84
92
993
Shakeri
,
H.
,
Azimian
,
A.
,
Ghasemzadeh-Moghaddam
,
H.
,
Safdari
,
M.
,
Haresabadi
,
M.
,
Daneshmand
,
T.
et al. (
2022
)
Evaluation of the relationship between serum levels of zinc, vitamin B12, vitamin D, and clinical outcomes in patients with COVID-19
.
J. Med. Virol.
94
,
141
146
994
Abobaker
,
A.
,
Alzwi
,
A.
and
Alraied
,
A.H.A.
(
2020
)
Overview of the possible role of vitamin C in management of COVID-19
.
Pharmacol. Rep.
72
,
1517
1528
995
Novak Kujundžić
,
R.
(
2022
)
COVID-19: are we facing secondary pellagra which cannot simply be cured by vitamin B3?
Int. J. Mol. Sci.
23
,
4309
996
Zheng
,
M.
,
Schultz
,
M.B.
and
Sinclair
,
D.A.
(
2022
)
NAD+ in COVID-19 and viral infections
.
Trends Immunol.
43
,
283
295
997
Chudzik
,
M.
,
Kapusta
,
J.
and
Burzyńska
,
M.
(
2021
)
Use of 1-MNA to improve exercise tolerance and fatigue in patients after COVID-19
.
medRxiv
2021.2007.2014.21259081
998
Bosch
,
T.
(
1996
)
Lipid apheresis: from a heroic treatment to routine clinical practice
.
Artif. Organs
20
,
414
419
999
Bornstein
,
S.R.
,
Voit-Bak
,
K.
,
Donate
,
T.
,
Rodionov
,
R.N.
,
Gainetdinov
,
R.R.
,
Tselmin
,
S.
et al. (
2022
)
Chronic post-COVID-19 syndrome and chronic fatigue syndrome: is there a role for extracorporeal apheresis?
Mol. Psychiatry
27
,
34
37
1000
Jaeger
,
B.R.
and
Seidel
,
D.
(
2001
)
[Hyperlipoproteinemia and LDL apheresis. Clinical experiences with the H.E.L.P. system]
.
Herz
26
,
531
544
1001
Jaeger
,
B.R.
,
Richter
,
Y.
,
Nagel
,
D.
,
Heigl
,
F.
,
Vogt
,
A.
,
Roeseler
,
E.
et al. (
2009
)
Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events
.
Nat. Clin. Pract. Cardiovasc. Med.
6
,
229
239
1002
Mattecka
,
S.
,
Brunner
,
P.
,
Hahnel
,
B.
,
Kunze
,
R.
,
Vogt
,
B.
and
Sheriff
,
A.
(
2019
)
Pentrasorb C-Reactive protein: characterization of the selective C-reactive protein adsorber resin
.
Ther. Apher. Dial.
23
,
474
481
1003
Torzewski
,
J.
,
Heigl
,
F.
,
Zimmermann
,
O.
,
Wagner
,
F.
,
Schumann
,
C.
,
Hettich
,
R.
et al. (
2020
)
First-in-man: case report of selective C-reactive protein apheresis in a patient with SARS-CoV-2 infection
.
Am. J. Case Rep.
21
,
e925020
1004
De Maio
,
A.
and
Hightower
,
L.E.
(
2020
)
COVID-19, acute respiratory distress syndrome (ARDS), and hyperbaric oxygen therapy (HBOT): what is the link?
Cell Stress Chaperones
25
,
717
720
1005
Feldmeier
,
J.J.
,
Kirby
,
J.P.
,
Buckey
,
J.C.
,
Denham
,
D.W.
,
Evangelista
,
J.S.
,
Gelly
,
H.B.
et al. (
2021
)
Physiologic and biochemical rationale for treating COVID-19 patients with hyperbaric oxygen
.
Undersea Hyperb. Med.
48
,
1
12
1006
Robbins
,
T.
,
Gonevski
,
M.
,
Clark
,
C.
,
Baitule
,
S.
,
Sharma
,
K.
,
Magar
,
A.
et al. (
2021
)
Hyperbaric oxygen therapy for the treatment of long COVID: early evaluation of a highly promising intervention
.
Clin. Med. (Lond.)
21
,
e629
e632
1007
Ortega
,
M.A.
,
Fraile-Martinez
,
O.
,
Garcia-Montero
,
C.
,
Callejón-Peláez
,
E.
,
Sáez
,
M.A.
,
Álvarez-Mon
,
M.A.
et al. (
2021
)
A general overview on the hyperbaric oxygen therapy: applications, mechanisms and translational opportunities
.
Medicina (Kaunas)
57
,
864
1008
Paganini
,
M.
,
Bosco
,
G.
,
Perozzo
,
F.A.G.
,
Kohlscheen
,
E.
,
Sonda
,
R.
,
Bassetto
,
F.
et al. (
2021
)
The role of hyperbaric oxygen treatment for COVID-19: a review
.
Adv. Exp. Med. Biol.
1289
,
27
35
1009
Harnanik
,
T.
,
Soeroso
,
J.
,
Suryokusumo
,
M.G.
and
Juliandhy
,
T.
(
2020
)
Effects of hyperbaric oxygen on T helper 17/regulatory T polarization in antigen and collagen-induced arthritis: hypoxia-inducible factor-1alpha as a target
.
Oman Med. J.
35
,
e90
1010
Harnanik
,
T.
,
Prihartono
,
S.
and
Juliandhy
,
T.
(
2020
)
Hyperbaric oxygen in animal model of rheumatoid arthritis: analysis Of HIF-1alpha, ACPA and IL-17a
.
Infect. Dis. Rep.
12
,
8766
1011
Sit
,
M.T.
,
Schmidt
,
T.W.
,
Edmonds
,
L.D.
,
Kelly
,
J.A.
,
Sky
,
K.M.
,
Thornton
,
J.A.
et al. (
2021
)
The effects of hyperbaric oxygen on rheumatoid arthritis: a pilot study
.
J. Clin. Rheumatol.
27
,
e462
e468
1012
Oliaei
,
S.
,
SeyedAlinaghi
,
S.
,
Mehrtak
,
M.
,
Karimi
,
A.
,
Noori
,
T.
,
Mirzapour
,
P.
et al. (
2021
)
The effects of hyperbaric oxygen therapy (HBOT) on coronavirus disease-2019 (COVID-19): a systematic review
.
Eur. J. Med. Res.
26
,
96
1013
Yanagawa
,
Y.
(
2021
)
Current status of hyperbaric oxygen therapy for COVID-19
.
Acute Med. Surg.
8
,
e678
1014
Bhaiyat
,
A.M.
,
Sasson
,
E.
,
Wang
,
Z.
,
Khairy
,
S.
,
Ginzarly
,
M.
,
Qureshi
,
U.
et al. (
2022
)
Hyperbaric oxygen treatment for long coronavirus disease-19: a case report
.
J. Med. Case Rep.
16
,
80
1015
Afshari
,
R.
,
Akhavan
,
O.
,
Hamblin
,
M.R.
and
Varma
,
R.S.
(
2021
)
Review of oxygenation with nanobubbles: possible treatment for hypoxic COVID-19 patients
.
ACS Appl. Nano Mater.
4
,
11386
11412
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).