Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-2 of 2
Eszter Nagy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Nikolina Trstenjak, Lukas Stulik, Harald Rouha, Jakub Zmajkovic, Manuel Zerbs, Eszter Nagy, Adriana Badarau
Journal:
Biochemical Journal
Biochem J (2019) 476 (2): 275–292.
Published: 25 January 2019
Abstract
Host defense against Staphylococcus aureus greatly depends on bacterial clearance by phagocytic cells. LukGH (or LukAB) is the most potent staphylococcal leukocidin towards human phagocytes in vitro , but its role in pathogenesis is obscured by the lack of suitable small animal models because LukGH has limited or no cytotoxicity towards rodent and rabbit compared with human polymorphonuclear cells (PMNs) likely due to an impaired interaction with its cellular receptor, CD11b. We aimed at adapting LukGH for the rabbit host by improving binding to the rabbit homolog of CD11b, specifically its I-domain (CD11b-I). Targeted amino acid substitutions were introduced into the LukH polypeptide to map its receptor interaction site(s). We found that the binding affinity of LukGH variants to the human and rabbit CD11b-I correlated well with their PMN cytotoxicity. Importantly, we identified LukGH variants with significantly improved cytotoxicity towards rabbit PMNs, when expressed recombinantly (10–15-fold) or by engineered S. aureus strains. These findings support the development of small animal models of S. aureus infection with the potential for demonstrating the importance of LukGH in pathogenesis.
Includes: Supplementary data
Articles
Andrea Fritzer, Birgit Noiges, Daniela Schweiger, Angelika Rek, Andreas J. Kungl, Alexander von Gabain, Eszter Nagy, Andreas L. Meinke
Journal:
Biochemical Journal
Biochem J (2009) 422 (3): 533–542.
Published: 27 August 2009
Abstract
Streptococcus pyogenes is one of the most common human pathogens and possesses diverse mechanisms to evade the human immune defence. One example of its immune evasion is the degradation of the chemokine IL (interleukin)-8 by ScpC, a serine proteinase that prevents the recruitment of neutrophils to an infection site. By applying the ANTIGENome technology and using human serum antibodies, we identified Spy0416, annotated as ScpC, as a prominent antigen that induces protective immune responses in animals. We demonstrate here for the first time that the recombinant form of Spy0416 is capable of IL-8 degradation in vitro in a concentration- and time-dependent manner. Mutations in the conserved amino acid residues of the catalytic triad of Spy0416 completely abolished in vitro activity. However, the isolated predicted proteinase domain does not exhibit IL-8-degrading activity, but is dependent on the presence of the C-terminal region of Spy0416. Binding to IL-8 is mainly mediated by the catalytic domain. However, the C-terminal region modulates substrate binding, indicating that the proteolytic activity is amenable to regulation via the non-catalytic regions. The specificity for human substrates is not restricted to IL-8, since we also detected in vitro protease activity for another CXC chemokine GRO-α (growth-related oncogene α), but not for NAP-2 (neutrophil-activating protein 2), SDF (stromal-cell-derived factor)-1α, PF-4 (platelet factor 4), I-TAC (interferon-γ-inducible T-cell α-chemoattractant), IP-10 (interferon-γ-inducible protein 10) and MCP-1 (monocyte chemoattractant protein 1). The degradation of two human CXC chemokines in vitro , the high sequence conservation, the immunogenicity of the protein in humans and the shown protection in animal studies suggest that Spy0416 is a promising vaccine candidate for the prevention of infections by S. pyogenes .