Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-1 of 1
Nancy Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Asma U. Husna, Nancy Wang, Jonathan J. Wilksch, Hayley J. Newton, Dianna M. Hocking, Iain D. Hay, Simon A. Cobbold, Mark R. Davies, Malcolm J. McConville, Trevor Lithgow, Richard A. Strugnell
Biochem J (2019) 476 (22): 3435-3453.
Published: 21 November 2019
Abstract
Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium ( S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δ pfs ). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δ pfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δ pfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.
Includes: Supplementary data