Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Article Type
Date
Availability
1-9 of 9
Keywords: Caveolin-1
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Biochemical Journal
Biochem J (2021) 478 (1): 247–260.
Published: 15 January 2021
... the posttranscriptional regulation of gene expression and is involved in many aspects of cellular physiology. In the present study, we investigated the role of HuR in the regulation of cell migration through the posttranscriptional regulation of Caveolin-1 (Cav-1). Online software was used to identify...
Abstract
The integrity of the intestinal mucosal barrier protects hosts against pathological conditions. Early mucosal restitution after wounding refers to epithelial cell migration into a defect. The RNA-binding protein HuR plays an important role in the posttranscriptional regulation of gene expression and is involved in many aspects of cellular physiology. In the present study, we investigated the role of HuR in the regulation of cell migration through the posttranscriptional regulation of Caveolin-1 (Cav-1). Online software was used to identify Cav-1 mRNA as a potential target of HuR. The interaction of HuR with Cav-1 mRNA was investigated via ribonucleoprotein immunoprecipitation (RNP IP) assays and biotin pulldown analysis. HuR was found to bind specifically to the Cav-1 3′-UTR rather than the coding region or 5′-UTR. Transfection of cells with siHuR decreased both HuR protein levels and Cav-1 protein levels; conversely, ectopic overexpression of HuR via infection of cells with an adenoviral vector containing HuR cDNA (AdHuR) increased Cav-1 protein levels without disturbing Cav-1 mRNA levels. Thus, HuR enhanced Cav-1 expression in vitro by stimulating Cav-1 translation. Intestinal epithelium-specific HuR knockout in mice decreased Cav-1 protein levels without changing Cav-1 mRNA levels, consistent with the in vitro results . Decreasing the levels of HuR via siHuR transfection inhibited early epithelial repair, but this effect was reversed by ectopic overexpression of GFP-tagged Cav-1. These results indicate that posttranscriptional regulation of Cav-1 gene expression by HuR plays a critical role in the regulation of rapid epithelial repair after wounding.
Articles
Journal:
Biochemical Journal
Biochem J (2016) 473 (19): 3177–3188.
Published: 27 September 2016
... cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced...
Abstract
The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.
Articles
Dariusz Zakrzewicz, Miroslava Didiasova, Anna Zakrzewicz, Andreas C. Hocke, Florian Uhle, Philipp Markart, Klaus T. Preissner, Malgorzata Wygrecka
Journal:
Biochemical Journal
Biochem J (2014) 460 (2): 295–307.
Published: 13 May 2014
... by fluorescence confocal microscopy and sucrose gradient ultracentrifugation. Co-immunoprecipitation studies revealed that ENO-1 interacts with Cav-1 (caveolin-1), but not with Cav-2, via the CSD (Cav-scaffolding domain). Moreover, an evolutionarily conserved CBM (Cav-binding motif) F 296 DQDDWGAW...
Abstract
Cell-surface-associated proteolysis plays a crucial role in embryonic development, monocyte/macrophage recruitment and tumour cell invasion. The glycolytic enzyme ENO-1 (enolase-1) is translocated from the cytoplasm to the cell surface, where it binds PLG (plasminogen) to enhance pericellular plasmin production and cell motility. In the present study, ENO-1 was found to localize to a specialized subset of lipid rafts called caveolae as demonstrated by fluorescence confocal microscopy and sucrose gradient ultracentrifugation. Co-immunoprecipitation studies revealed that ENO-1 interacts with Cav-1 (caveolin-1), but not with Cav-2, via the CSD (Cav-scaffolding domain). Moreover, an evolutionarily conserved CBM (Cav-binding motif) F 296 DQDDWGAW 304 was identified within ENO-1. The point mutation W301A within the ENO-1 CBM was, however, not sufficient to disrupt ENO-1–Cav-1 interaction, whereas the mutations F296A and W304A markedly affected ENO-1 protein expression. Furthermore, ENO-1 was found associated with Annx2 (annexin 2), representing another caveolar protein, and this interaction was dependent on Cav-1 expression. Knockdown of Cav-1 and Annx2 markedly decreased cell surface expression of ENO-1. ENO-1 overexpression increased cell migration and invasion in a Cav-1-dependent manner. Thus the differential association of ENO-1 with caveolar proteins regulates ENO-1 subcellular localization and, consequently, ENO-1-dependent cell migration and invasion.
Includes: Supplementary data
Articles
Susan A. Maroney, Paul E. Ellery, Jeremy P. Wood, Josephine P. Ferrel, Catherine E. Bonesho, Alan E. Mast
Journal:
Biochemical Journal
Biochem J (2012) 443 (1): 259–266.
Published: 14 March 2012
... 2012 © The Authors Journal compilation © 2012 Biochemical Society 2012 A previous study using HEK (human embryonic kidney)-293 cells, which do not express caveolin-1, indicated that lipid rafts do not play a role in the down-regulation of TF activity by TFPI [ 17 ]. In order to better...
Abstract
TFPI (tissue factor pathway inhibitor) is an anticoagulant protein that prevents intravascular coagulation through inhibition of fXa (Factor Xa) and the TF (tissue factor)–fVIIa (Factor VIIa) complex. Localization of TFPI within caveolae enhances its anticoagulant activity. To define further how caveolae contribute to TFPI anticoagulant activity, CHO (Chinese-hamster ovary) cells were co-transfected with TF and membrane-associated TFPI targeted to either caveolae [TFPI–GPI (TFPI–glycosylphosphatidylinositol anchor chimaera)] or to bulk plasma membrane [TFPI–TM (TFPI–transmembrane anchor chimaera)]. Stable clones had equal expression of surface TF and TFPI. TX-114 cellular lysis confirmed localization of TFPI–GPI to detergent-insoluble membrane fractions, whereas TFPI–TM localized to the aqueous phase. TFPI–GPI and TFPI–TM were equally effective direct inhibitors of fXa in amidolytic assays. However, TFPI–GPI was a significantly better inhibitor of TF–fVIIa than TFPI–TM, as measured in both amidolytic and plasma-clotting assays. Disrupting caveolae by removing membrane cholesterol from EA.hy926 cells, which make TFPIα, CHO cells transfected with TFPIβ and HUVECs (human umbilical vein endothelial cells) did not affect their fXa inhibition, but significantly decreased their inhibition of TF–fVIIa. These studies confirm and quantify the enhanced anticoagulant activity of TFPI localized within caveolae, demonstrate that caveolae enhance the inhibitory activity of both TFPI isoforms and define the effect of caveolae as specifically enhancing the anti-TF activity of TFPI.
Articles
Journal:
Biochemical Journal
Biochem J (2010) 427 (1): 79–90.
Published: 15 March 2010
...-disrupting agents (filipin and nystatin) and caveolin-1 siRNA (small interfering RNA), suggesting that caveolae/lipid rafts are signalling platforms for inducing IbeA–vimentin-mediated E. coli invasion of HBMECs. Taken together, the present studies suggest that a dynamic and function-related interaction...
Abstract
IbeA in meningitic Escherichia coli K1 strains has been described previously for its role in invasion of BMECs (brain microvascular endothelial cells). Vimentin was identified as an IbeA-binding protein on the surface of HBMECs (human BMECs). In the present study, we demonstrated that vimentin is a primary receptor required for IbeA+ E. coli K1-induced signalling and invasion of HBMECs, on the basis of the following observations. First, E44 (IbeA+ E. coli K1 strain) invasion was blocked by vimentin inhibitors (withaferin A and acrylamide), a recombinant protein containing the vimentin head domain and an antibody against the head domain respectively. Secondly, overexpression of GFP (green fluorescent protein)–vimentin and GFP–VDM (vimentin head domain deletion mutant) significantly increased and decreased bacterial invasion respectively. Thirdly, bacterial invasion was positively correlated with phosphorylation of vimentin at Ser 82 by CaMKII (Ca 2+ /calmodulin-dependent protein kinase II) and IbeA+ E. coli -induced phosphorylation of ERK (extracellular-signal-regulated kinase). Blockage of CaMKII by KN93 and inhibition of ERK1/2 phosphorylation by PD098059 resulted in reduced IbeA+ E. coli invasion. Fourthly, IbeA+ E. coli and IbeA-coated beads induced the clustering of vimentin that was correlated with increased entry of bacteria and beads. Lastly, IbeA+ E. coli K1 invasion was inhibited by lipid-raft-disrupting agents (filipin and nystatin) and caveolin-1 siRNA (small interfering RNA), suggesting that caveolae/lipid rafts are signalling platforms for inducing IbeA–vimentin-mediated E. coli invasion of HBMECs. Taken together, the present studies suggest that a dynamic and function-related interaction between IbeA and its primary receptor vimentin at HBMEC membrane rafts leads to vimentin phosphorylation and ERK-mediated signalling, which modulate meningitic E. coli K1 invasion.
Includes: Supplementary data
Articles
Faiyaz Ahmad, Rebecka Lindh, Yan Tang, Iida Ruishalme, Anita Öst, Bobby Sahachartsiri, Peter Strålfors, Eva Degerman, Vincent C. Manganiello
Journal:
Biochemical Journal
Biochem J (2009) 424 (3): 399–410.
Published: 10 December 2009
... with caveolae. siRNA (small interfering RNA)-mediated KD (knockdown) of CAV-1 (caveolin-1) in 3T3-L1 adipocytes resulted in down-regulation of expression of membrane-associated PDE3B. Insulin-induced activation of PDE3B was reduced, whereas CL-mediated activation was almost totally abolished. Similar...
Abstract
In adipocytes, PDE3B (phosphodiesterase 3B) is an important regulatory effector in signalling pathways controlled by insulin and cAMP-increasing hormones. Stimulation of 3T3-L1 adipocytes with insulin or the β 3 -adrenergic receptor agonist CL316243 (termed CL) indicated that insulin preferentially phosphorylated/activated PDE3B associated with internal membranes (endoplasmic reticulum/Golgi), whereas CL preferentially phosphorylated/activated PDE3B associated with caveolae. siRNA (small interfering RNA)-mediated KD (knockdown) of CAV-1 (caveolin-1) in 3T3-L1 adipocytes resulted in down-regulation of expression of membrane-associated PDE3B. Insulin-induced activation of PDE3B was reduced, whereas CL-mediated activation was almost totally abolished. Similar results were obtained in adipocytes from Cav-1 -deficient mice. siRNA-mediated KD of CAV-1 in 3T3-L1 adipocytes also resulted in inhibition of CL-stimulated phosphorylation of HSL (hormone-sensitive lipase) and perilipin A, and of lipolysis. Superose 6 gel-filtration chromatography of solubilized membrane proteins from adipocytes stimulated with insulin or CL demonstrated the reversible assembly of distinct macromolecular complexes that contained 32 P-phosphorylated PDE3B and signalling molecules thought to be involved in its activation. Insulin- and CL-induced macromolecular complexes were enriched in cholesterol, and contained certain common signalling proteins [14-3-3, PP2A (protein phosphatase 2A) and cav-1]. The complexes present in insulin-stimulated cells contained tyrosine-phosphorylated IRS-1 (insulin receptor substrate 1) and its downstream signalling proteins, whereas CL-activated complexes contained β 3 -adrenergic receptor, PKA-RII [PKA (cAMP-dependent protein kinase)-regulatory subunit] and HSL. Insulin- and CL-mediated macromolecular complex formation was significantly inhibited by CAV-1 KD. These results suggest that cav-1 acts as a molecular chaperone or scaffolding molecule in cholesterol-rich lipid rafts that may be necessary for the proper stabilization and activation of PDE3B in response to CL and insulin.
Includes: Supplementary data
Articles
Stéphane BARAKAT, Landry GAYET, Guila DAYAN, Stéphane LABIALLE, Adina LAZAR, Vladimir OLEINIKOV, Anthony W. COLEMAN, Loris G. BAGGETTO
Journal:
Biochemical Journal
Biochem J (2005) 388 (2): 563–571.
Published: 24 May 2005
... seems deprived of this function. 1 To whom correspondence should be addressed (email lg.baggetto@ibcp.fr ). 2 12 2004 4 1 2005 7 2 2005 7 2 2005 The Biochemical Society, London 2005 atomic force microscopy ATPase caveolin-1 detergent-resistant membranes...
Abstract
Considerable interest exists about the localization of P-gp (P-glycoprotein) in DRMs (detergent-resistant membranes) of multidrug resistant cancer cells, in particular concerning the potential modulating role of the closely related lipids and proteins on P-gp activity. Our observation of the opposite effect of verapamil on P-gp ATPase activity from DRM and solubilized-membrane fractions of CEM-resistant leukaemia cells, and results from Langmuir experiments on membrane monolayers from resistant CEM cells, strongly suggest that two functional populations of P-gp exist. The first is located in DRM regions: it displays its optimal P-gp ATPase activity, which is almost completely inhibited by orthovanadate and activated by verapamil. The second is located elsewhere in the membrane; it displays a lower P-gp ATPase activity that is less sensitive to orthovanadate and is inhibited by verapamil. A 40% cholesterol depletion of DRM caused the loss of 52% of the P-gp ATPase activity. Cholesterol repletion allowed recovery of the initial P-gp ATPase activity. In contrast, in the solubilized-membrane-containing fractions, cholesterol depletion and repletion had no effect on the P-gp ATPase activity whereas up to 100% saturation with cholesterol induced a 58% increased P-gp ATPase activity, while no significant modification was observed for the DRM-enriched fraction. DRMs were analysed by atomic force microscopy: 40–60% cholesterol depletion was necessary to remove P-gp from DRMs. In conclusion, P-gp in DRMs appears to contain closely surrounding cholesterol that can stimulate P-gp ATPase activity to its optimal value, whereas cholesterol in the second population seems deprived of this function.
Articles
Journal:
Biochemical Journal
Biochem J (2005) 385 (3): 795–802.
Published: 24 January 2005
... have used DNA microarray analysis to identify potential gene targets of FOXO. In the present study we demonstrate that caveolin-1 is directly controlled by FOXO. Firstly, caveolin-1 expression was increased upon induction or over-expression of FOXO factors at both mRNA and protein levels. Second, we...
Abstract
Protein kinase B can phoshorylate and thereby inactivate the FOXO (forkhead box O) family of transcription factors. When active, FOXO factors can bind to DNA in promoter sequences and subsequently regulate gene expression. We have used DNA microarray analysis to identify potential gene targets of FOXO. In the present study we demonstrate that caveolin-1 is directly controlled by FOXO. Firstly, caveolin-1 expression was increased upon induction or over-expression of FOXO factors at both mRNA and protein levels. Second, we show that endogenous regulation of FOXO activity regulates caveolin-1 levels and that this can be inhibited by dominant-negative FOXO. Third, FOXO activates transcription from the caveolin-1 promoter, and using chromatin immunoprecipitations we demonstrated that this activation occurs via direct interaction of FOXO with the promoter. Finally, we demonstrate FOXO-mediated attenuation of EGF (epidermal growth factor)-induced signalling, which in part is mediated by caveolin-1 expression, as suggested by previous studies [Park, Park, Cho, Kim, Ko, Seo and Park (2000) J. Biol. Chem. 275 , 20847–20852]. These findings suggest a novel mechanism by which FOXO factors can exert their cellular effects via transcriptional activation of caveolin-1.
Articles
Journal:
Biochemical Journal
Biochem J (2000) 351 (1): 257–264.
Published: 26 September 2000
... B2 receptor caveolin-1 mitogen-activated protein kinase STAT3 Tyk2 Biochem. J. (2000) 351, 257 264 (Printed in Great Britain) 257 Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells : localization...
Abstract
Bradykinin (BK) is an important physiological regulator of endothelial cell function. In the present study, we have examined the role of the Janus-activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in endothelial signal transduction through the BK B2 receptor (B2R). In cultured bovine aortic endothelial cells (BAECs), BK activates Tyk2 of the JAK family of tyrosine kinases. Activation results in the tyrosine phosphorylation and subsequent nuclear translocation of STAT3. BK also activates the mitogen-activated p44 and p42 protein kinases, resulting in STAT3 serine phosphorylation. Furthermore, Tyk2 and STAT3 form a complex with the B2R in response to BK stimulation. Under basal conditions, Tyk2, STAT3 and the B2R are localized either partially or entirely in endothelial plasmalemmal caveolae. Following BK stimulation of BAECs, however, the B2R and STAT3 are translocated out of caveolae. Taken together, these data suggest that BK activates the JAK/STAT pathway in endothelial cells and that JAK/STAT signalling proteins are localized in endothelial caveolae. Moreover, caveolar localization of the B2R and STAT3 appears to be regulated in an agonist-dependent manner.