Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-2 of 2
Keywords: sulphotransferase (SULT)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Biochemical Journal
Biochem J (2004) 383 (3): 543–549.
Published: 26 October 2004
... biomarker ethyl sulphate phenotyping sulpho-conjugation sulphotransferase (SULT) Sulpho-conjugation is an important biotransformation reaction for drugs and other xenobiotics [ 1 – 3 ]. It involves the enzyme-mediated transfer of the sulpho group from the co-substrate PAPS (3′-phosphoadenosine-5...
Abstract
We studied whether ethanol is sulphonated in humans with the perspective of using the urinary excretion of ethyl sulphate after ethanol consumption as a biomarker for SULT (sulphotransferase) activity. We developed a sensitive and selective HPLC–MS/MS method for determining ethyl sulphate in urine. Ten volunteers received a low dose of ethanol (0.1 g/kg of body mass). In general, excretion of ethyl sulphate was maximal in the first or second hour after dosage. Within 8 h, 2.5–6.8 μmol of ethyl sulphate was excreted. A 5-fold increase in the dose of ethanol led to an increase in the amount of ethyl sulphate excreted within 8 h (28–95 μmol) and the presence of this metabolite in urine for at least 24 h. Since ethyl sulphate was still being excreted for a substantial period after the elimination of ethanol, it might be used as a medium-time biomarker for preceding ethanol consumption. We have expressed previously all human SULT forms identified in Salmonella typhimurium . Ethanol sulphonation was studied in cytosolic preparations of these strains. The highest activities were observed with SULT1A2, 1B1 and 1C2, followed by 1A3. Activities were markedly lower with SULT1E1, 1A1 and 2A1, and were negligible with SULT1C1, 2B1a, 2B1b and 4A1. If the expression levels in tissues are additionally taken into account, SULT1A3 might be the predominant form for the sulphonation of ethanol in vivo , although a robust estimate requires further studies. With this limitation, urinary ethyl sulphate excretion appears very promising as a biomarker for SULT activity in vivo .
Articles
Journal:
Biochemical Journal
Biochem J (2004) 379 (3): 533–540.
Published: 01 May 2004
... correspondence should be addressed (e-mail Charles.Falany@ccc.uab.edu ). 3 10 2003 16 12 2003 23 1 2004 23 1 2004 The Biochemical Society, London ©2004 2004 [1,2,6,7- 3 H(N)]dehydroepiandrosterone (DHEA) placenta prostate sulphation sulphotransferase (SULT) SULT2B1b...
Abstract
The human hydroxysteroid SULT (sulphotransferase) 2B1 subfamily consists of two isoforms, SULT2B1a and SULT2B1b. These two isoenzymes are transcribed from the same gene by alternative splicing of their first exons and share 94% amino acid sequence identity. The SULT2B1 isoforms are highly selective for the sulphation of 3β-hydroxysteroids. Immunoblot analysis of SULT2B1 expression in several human tissues indicates the presence of only SULT2B1b protein. Immunoreactive SULT2B1b protein was detected in human prostate, skin, placenta and lung tissue. SULT2B1b mRNA expression was detected in RNA isolated from term placenta, normal prostate, prostate carcinoma, benign prostate hyperplasia, LNCaP prostate cancer cells, breast cancer specimens and MCF-7 breast cancer cells. Immunohistochemical localization of SULT2B1b, in terms placental and prostate tissues, detected it in nuclei of placental syncytiotrophoblasts and cytoplasm of epithelial cells in prostate tissues. Immunoreactive and catalytically active SULT2B1b was identified in nuclei isolated from term human placenta. Also SULT2B1b was capable of translocating to nuclei in BeWo placental cells after stable transfection and differentiation. In contrast, immunohistochemical analysis of human prostate showed only cytosolic localization of SULT2B1b in the basal and luminal prostate epithelial cells. SULT2B1b was not detected in isolated nuclei from LNCaP prostate cancer cells but was present in the cytosolic fraction. Differential subcellular localization of SULT2B1b in prostate and placenta suggests that SULT2B1b may be differentially regulated and have different physiological functions in these two hormonally responsive human tissues.