Several of the nine hexahydroxycylohexanes (inositols) have functions in Biology, with myo-inositol (Ins) in most of the starring roles; and Ins polyphosphates are amongst the most abundant organic phosphate constituents on Earth. Many Archaea make Ins and use it as a component of diphytanyl membrane phospholipids and the thermoprotective solute di-L-Ins-1,1′-phosphate. Few bacteria make Ins or use it, other than as a carbon source. Those that do include hyperthermophilic Thermotogales (which also employ di-l-Ins-1,1′-phosphate) and actinomycetes such as Mycobacterium spp. (which use mycothiol, an inositol-containing thiol, as an intracellular redox reagent and have characteristic phosphatidylinositol-linked surface oligosaccharides). Bacteria acquired their Ins3P synthases by lateral gene transfer from Archaea. Many eukaryotes, including stressed plants, insects, deep-sea animals and kidney tubule cells, adapt to environmental variation by making or accumulating diverse inositol derivatives as ‘compatible’ solutes. Eukaryotes use phosphatidylinositol derivatives for numerous roles in cell signalling and regulation and in protein anchoring at the cell surface. Remarkably, the diradylglycerol cores of archaeal and eukaryote/bacterial glycerophospholipids have mirror image configurations: sn-2,3 and sn-1,2 respectively. Multicellular animals and amoebozoans exhibit the greatest variety of functions for PtdIns derivatives, including the use of PtdIns(3,4,5)P3 as a signal. Evolutionarily, it seems likely that (i) early archaeons first made myo-inositol approx. 3500 Ma (million years) ago; (ii) archeons brought inositol derivatives into early eukaryotes (approx. 2000 Ma?); (iii) soon thereafter, eukaryotes established ubiquitous functions for phosphoinositides in membrane trafficking and Ins polyphosphate synthesis; and (iv) since approx. 1000 Ma, further waves of functional diversification in amoebozoans and metazoans have introduced Ins(1,4,5)P3 receptor Ca2+ channels and the messenger role of PtdIns(3,4,5)P3.
Skip Nav Destination
Article navigation
January 2007
Issue Editors
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
Conference Article|
January 21 2007
Evolution of the diverse biological roles of inositols
Robert H. Michell
Robert H. Michell
1
1School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
1email [email protected]
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1744-1439
Print ISSN: 0067-8694
© 2006 Biochemical Society
2006
Biochem Soc Symp (2007) 74: 223–246.
Citation
Michael J.O. Wakelam, Robert H. Michell; Evolution of the diverse biological roles of inositols. Biochem Soc Symp 12 January 2007; 74 223–246. doi: https://doi.org/10.1042/BSS2007c19
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Related Articles
Self-assembly and biophysical properties of archaeal lipids
Emerg Top Life Sci (November,2022)
Inactivation of eukaryotic initiation factor 2B in vitro by heat shock
Biochem J (September,1998)
Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC
Biochem J (May,2011)
After the boring billion and before the freezing millions: evolutionary patterns and innovations in the Tonian Period
Emerg Top Life Sci (June,2018)