Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Date
Availability
1-1 of 1
Antoine van Oijen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Journal:
Biochemical Society Symposia
Biochem Soc Symp (2005) 72: 71–76.
Published: 01 January 2005
Abstract
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the first real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have visualized the formation of coats by monitoring the incorporation of fluorescently tagged clathrin or its adaptor AP-2 (adaptor protein 2), and have followed clathrin-mediated uptake of transferrin, single LDL (low-density lipoprotein) and single reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no preferred nucleation sites. A proportion of the nucleation events appear to be abortive. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit, and loading appears to commit that pit to finish assembly. Our data led to a model in which coated pits initiate randomly, but collapse with high likelihood unless stabilized, presumably by cargo capture.