Cytochrome c oxidase is an intricate metalloprotein that transfers electrons from cytochrome c to oxygen in the last step of the mitochondrial respiratory chain. It uses the free energy of this reaction to sustain a transmembrane electrochemical gradient of protons. Site-directed mutagenesis studies of bacterial terminal oxidases and the recent availability of refined crystal structures of the enzyme are rapidly expanding the understanding of the coupling mechanism between electron transfer and proton translocation. In contrast, relatively little is known about the assembly pathway of cytochrome c oxidase. Studies in yeast have indicated that assembly is dependent on numerous proteins in addition to the structural subunits and prosthetic groups. Human homologues of a number of these assembly factors have been identified and some are now known to be involved in disease. To dissect the assembly pathway of cytochrome c oxidase, we are characterizing tissues and cell cultures derived from patients with genetically defined cytochrome c oxidase deficiency, using biochemical, biophysical and immunological techniques. These studies have allowed us to identify some of the steps of the assembly process.

This content is only available as a PDF.
You do not currently have access to this content.